
Building your Automated Test Case Generation Tool
for REST APIs

with RestTestGen

Mariano Ceccato
mariano.ceccato@univr.it

This work has been done in collaboration mainly with Davide Corradini, Michele Pasqua and Sofia Mari

mailto:mariano.ceccato@univr.it
mailto:mariano.ceccato@univr.it

Credits 2

Davide Corradini Michele Pasqua Sofia Mari

What is a Web API or REST API?

REST API

4

C
R
U
D

Create
Read
Update
Delete

(HTTP)

What is a Web API or REST API? 5

REST API

OpenAPI Specification 6

Problem definition
• The number of REST APIs grows larger and larger
• REST APIs contain programming defects and/or vulnerabilities
• Manual writing of test cases is limiting and costly

Automated black-box test cases generation
for REST APIs

7

Test case

+

Create a
playlist

+
Add a song

to the playlist
Retrieve the

playlist

Check if the
playlist contains

the song

? PASS

FAIL

8

Testing a web/app ui 9

Spotify W
eb App

Spotify Android App

Challenge 1: Operations Testing Order 10

Spotify’s REST API specification

?

Challenge 2: Test Input Values
• What are suitable input values for input parameters?

• API specifications often do not provide example values

• Validity of values might depend on the state of the API
• E.g., resource identifiers

11

Challenge 3: The Oracle Problem

• Did the SUT behave as expected during/after the test scenario?

12

Check if the
playlist contains

the song

? PASS

FAIL

RestTestGen: Automated Black-Box
Testing of Nominal and Error Scenarios in
RESTful APIs

13

Initial testing approach 14

OAS Operation
dependency

graph

Nominal tests Error tests

REST API
under test

rest

rest

Operation Dependency 15

/pets:
get:
summary: List all pets
operationId: getPets
tags:
- pets

responses:
'200':
description: PetIds
content:
application/json:
schema:
type: array
items:
type: object
properties:
petId:
type: integer

/pets/{petId}:
get:
summary: Info for a specific pet
operationId: getPetById
tags:

- pets
parameters:

- name: petId
in: path
required: true
schema:

type: string

ou
tp

ut

in
pu

t
getPetById getPets

petId

Case mismatch
petID, petid, petId

Id completion
/getPet➠ Pet
pet.id ➠ petId

Stemming
pets➠ pet

Operation Testing Order 16

C

D

E

B

A

C E

1. head

2. post

3. get

4. put/patch

5. delete

• Leaf nodes are selected (no outgoing edges)
• No input
• Input is not available on operations output

• To maximize the likelihood of a successful test,
resources might require to be in a certain status

• Leaf nodes are order based on the CRUD semantics

Operation Testing Order 17

D

B

A

• Tested operations are removed from the
graph

• New operations become leaf nodes and
can now be testedB

The order in which operations are tested can
not be precomputed, because it depends on
what operations we succeed in testing

Input Value Generation
• Based on response dictionary

• Map (name→values) of data observed at testing time, while testing
previous operations

• Exact name match petId✓ petId
• Concatenation of object + field pet.id✓ petId
• Name edit distance < threshold petsId✓ petId
• Key is a substring myPetId✓ petId

• Based on OAS definition
• Enum, example, default values
• Random values (compatible with constraints)

18

HTTP Status Code Oracle
• 2xx means correct execution

• 200: ok
• 201: successful resource creation

• 4xx means error that is correctly handled
• 400: bad request
• 404: not found

• 5xx means error
• 500: server crash

19

✓

✗

?

Schema Validation Oracle 20

responses:
'200':
description: Expected response to a valid request
content:
application/json:
schema:
$ref: "#/components/schemas/Pet"

components:
schemas:
Pet:
type: object
required:
- id
- name
- tag

properties:
id:
type: integer
format: int64

name:
type: string

tag:
type: string

{
"id": 1,
"name": "doggy",
"tag": "dog"

}

{
"id": 1,
"name": "doggy"

}

{
"id": 1,
"name": "doggy",
"tag": 5

}

✓ ✗
✗

Testing of Error Cases
• Analyses how an API behaves

when it is given wrong input data
• Mutation operators

• Remove a required input field
• Change field type
• Change field value

21

Nominal tests Error tests

REST API
under test

rest

HTTP Status Code Oracle
• 2xx means correct execution

• 200: ok
• 201: successful resource creation

• 4xx means error that is correctly handled
• 400: bad request
• 404: not found

• 5xx means error
• 500: server crash

Oct 25th, 2020

22

✗

✗
?

Deep Reinforcement Learning-
Based REST API Testing

23

E-Commerce API 24

E-Commerce API

POST
/checkout

GET /searchProducts POST
/addToCart

Input: search term

Output: list of products

Input: product id, quantity

Problem: implicit dependencies are ignored!

Reinforcement Learning 26

Agent
Environment

Action

Observation

• Action Space: what we can act on

• State Space: what we measure of the
environment

• Reward Function: the feedback signal

✗ penalty
✓ reward

Action
• GET /searchProducts
• POST /addToCart
• POST /checkout

27

POST
/checkout

GET /searchProducts

POST
/addToCart

State 28

[0,0,0]Search

Add to cart

Checkout

POST
/checkout

GET /searchProducts

POST
/addToCart

State transition 29

[0,0,0] [1,0,0] [1,1,0] [1,1,1]

Search

Add to cart

Checkout

Reward: curiosity driven

• Positive: Successfully tested a new operation (never visited so far)

• Negative: Successfully tested an operation that was already
tested

• Slightly negative: Fail in testing an operation

30

Agent
✗ penalty
✓ reward

Input Generation: Experience Driven
• Random, example values, response dictionary, etc.

31

quantitysearchTerm productId

Yes,
random

Yes, use an observed
value

Not
necessary

The Multi-Armed Bandit Problem 32

• Epsilon-Greedy algorithms

Test Intensification 33

Test Case

Test Case’

Test Case’’

Test Case’’’’

Test Case’’’
Refill parameter

Test Case’’’’’

DeepREST 34

Evolution towards a reusable
research tool

43

44RestTestGen Framework

1. Core components
• A collection of ready-to-use classes that a researcher may directly

integrate into a testing strategy
• OpenAPI Parser
• Parameters, Operations
• Test interaction, Test sequence, Test runner, Test result
• Operation dependency graph

45

2. Extensible components
• A set of abstract and concrete classes for which researchers

might want to provide a new implementation to deliver their new
testing algorithm

• Operation sorter
• Fuzzer
• Parameter value provider
• Mutator
• Oracle
• Writer
• Strategy

46

RTG documentation wiki
• git clone https://github.com/SeUniVr/RestTestGen-Wik
• cd RestTestGen-Wiki
• docker compose up –d
• open http://localhost:3000

49

https://github.com/SeUniVr/RestTestGen-Wik
https://github.com/SeUniVr/RestTestGen-Wik
https://github.com/SeUniVr/RestTestGen-Wik

Research on fuzzing REST APIs

• Defining effective testing
strategies

• Find working, testable case
studies

• Compute testing metrics
• Compare with the baseline

50

PASQUA M TestingTools

Tool

REST

HTTP request

HTTP response

⋮
HTTP request

HTTP responseOpenAPISpec

RestPL
RestTestGen QuickREST

Schemathesis

Dredd bBOXRT RestCT TnTFuzzer

ARAT-RL RESTest EvoMaster APIFuzzer

RESTler
SwaggerFuzzer Morest

DeepREST

B
la
ck
-b
ox

W hite-box

3 ICST2025RESTAPITesting

PASQUA M TestingTools

Tool

REST

HTTP request

HTTP response

⋮
HTTP request

HTTP response

OpenAPISpec

RestPL
RestTestGen QuickREST

Schemathesis

Dredd bBOXRT RestCT TnTFuzzer

ARAT-RL RESTest EvoMaster APIFuzzer

RESTler
SwaggerFuzzer Morest

DeepREST

B
la
ck
-b
ox

W hite-box

3 ICST2025RESTAPITesting

RestGym: a compassion testbed for researches

• Extensible container-based
testing infrastructure

• Automated orchestration
engine

• 6 Built-in test case generation
tools and APIs

• 11 Built-in testing metrics
• Aggregate results and provide

detailed reports

51
PASQUA M Overview

Built-in test case generation tools and APIs retrieved from Docker Hub

Tool1

Tooln

…

API1

APIm

…

test

test

Metric1

…
Metrick

Metric1

…
Metrick

Report1

log

Reportm

log

…

orchestration
engine

API

Tool

User-provided test case generation tools and APIs locally built

6 ICST 2025RЕЅТgуm

• Aggregate effectiveness results on all the APIs

• Efficiency trends on a single API

Testing reports 52

PASQUA M Testing Reports

Aggregate effectiveness results on all APIs

Effi

c

i ency trends on a single API

8 ICST 2025RЕЅТgуm

PASQUA M Testing Reports

Aggregate effectiveness results on all APIs

Effi

c

i ency trends on a single API

8 ICST 2025RЕЅТgуm

Tools competition
• Workshop on Search-Based and Fuzz Testing @ICSE26

• Structured empirical comparison
• Common ground

• Hardware, OS, time budget
• Case studies, with different features (complexity, …)
• Metrics (e.g., coverage, defect/vulnerability revealing, …)

• Objective:
• Winner/loser
• Relation between tool capabilities and case study features

53

Contributions
• Open-source tool implementation

• https://github.com/SeUniVr/RestTestGen

54

https://github.com/SeUniVr/RestTestGen
https://github.com/SeUniVr/RestTestGen

RestTestGen
in practice
Davide Corradini
University of Luxembourg

Mariano Ceccato
University of Verona

2

Architecture

HTTP requests

HTTP responses

RestTestGen

Reverse proxy
(for inspection during the tutorial)

OpenAPI spec.

Test report

3

The Book Store API

Lists all books

Creates a new book

Deletes a book

Updates data of a book

Gathers data of a specific book

Book entity

4

Challenge: Generate successful requests to the API

1. The overall goal of today’s tutorial is to implement a testing strategy
capable of successfully test all operations exposed by the Book
Store API
• 200 status code class

2. Why successful requests are important?
• a successful request is understood and completed by the server
• only successful requests can test application behavior, trigger new

resource creation, retrieval, or modification
• in real scenarios, users provide correct data and sequences. Tools must

mirror users by generating not just error cases, but valid use cases
• once successful interactions are possible, more complex test scenarios

become feasible

5

Basic strategy

1. Random ordering of calls to API operations

2. Random input data generation

6

New challenge: realistic input data

1. Problem:
• the search space for valid input is huge
• random generators cannot generate relevant and realistic input
• example: it is unlikely to generate a valid ISBN for a string parameter

2. Solution: a large langue model can generate realistic data

7

New challenge: valid data (e.g., valid UUIDs)

1. Problem: Validity of part of the input data is state-dependent.
• E.g., an UUID is only valid if a resource is available in the system with a

specific UUID.

2. Observation: The API outputs valid data in some of its responses

3. Solution: we can store this data and reuse it in subsequent
requests

8

New challenge: operation ordering

1. Problem: the random order undermines the effectiveness of
approach
• If ‘producer’ operation are executed at last, we miss useful data

2. Solution: intelligent ordering of operation calls based on data-
dependencies
• ‘producer’ operations must be executed first, ‘consumers’ later

9

RestTestGen

1. Open-source tool implementation​

2. https://github.com/SeUniVr/RestTestGen

https://github.com/SeUniVr/RestTestGen
https://github.com/SeUniVr/RestTestGen

RestTestGen internals

55

Configuration file
• The file is “rtg-config.yml”

• strategyClassName: strategy to run
• apiUnderTest: the REST API to test.

56

OpenAPI parser
• Very robust, able to deal with most of the common syntax

mismatches and inconsistencies, often present in OAS files
• Fill internal structure to be used at testing time:

• List of operations
• Operation

• Endpoint
• HTTP method
• Input/output schema (format)
• DataTemplate for each input parameter (atomic or compound)

• Name, type, domain, constraints

57

Operation 58
Operation

Method //GET, POST, PUT, DELETE, ...
Endpoint
Parameters
TypeOfCurdOperation // CREATE, READ, UPDATE, DELETE
Validation Rules
Request body //StructuredParameter
Response //StructuredParameter
getAllRequestParameters()
getHeaderParameters()
getPathParameters()
getCookieParameters()
getOutputParameters()

Parameter

LeafParameter

StringParameter BooleanParameter

NumberParameter GenericParameter

NullParameter

StructuredParameter

Array Parameter Object Parameter

Parameter types

Parameter
Name
NormalizedName
SchemaName
Required
Format
Location
DefaultValue
EnumValue
Examples
Description
Operation
Parent
getChildren()
getValue()
setValueManually(Object)
setValueWithProvider(ParameterValueProvider)
deepClone()

Input/output parameter

Testcase
• TestSequence: an ordered list of interactions
• TestInteraction: data to send a single request to an operation

by the TestRunner

61

TestSequence
testInteractions
isExecuted()
inferVariablesFromConcreteValues()

TestInteraction
reference operation
requestMethod //GET, POST, PUT, DELETE, …
requestURL
requestHeaders
requestSentAt

responseProtocol //e.g. HTTP/1.1
responseStatusCode //200, 404, 500, …
responseBody
responseReceivedAt

TestRunner
- instance
run(TestSequence)
tryTestInteractionExecution(TestInteraction)

ODG: Operation dependency graph
• ODG captures the producer-consumer relation among operations

62

/pets:
get:
summary: List all pets
operationId: getPets
tags:
- pets

responses:
'200':
description: PetIds
content:
application/json:
schema:
type: array
items:
type: object
properties:
petId:
type: integer

ou
tp

ut
/pets/{petId}:

get:
summary: Info for a specific pet
operationId: getPetById
tags:
- pets

parameters:
- name: petId
in: path
required: true
schema:
type: string

in
pu

t

getPetById getPets
petId

Operation sorter
• OperationSorter is responsible for deciding the order of

operations in a test sequence

• Static: the ordering is performed before starting the execution of
the TestSequence

• Dynamic: the order within the TestSequence is defined
during the test execution as the next operation to be tested
depends on the outcome of the previous ones

63

Operation sorter 64

OperationsSorter

StaticOperationsSorter

GraphBasedOperationSorter

DynamicOperationsSorter

RandomOperationSorter

Dictionary
• The Dictionary is used to store and retrieve values observed

while testing

• Global dictionary for the whole testing session
• Possibly local dictionaries that can store the values observed in a

smaller set of Test Interactions.

65

Input value provider
• ParameterValueProvider is responsible of providing a value for a

parameter under consideration, based on its DataTemplate:

• ExampleValueProvider: returns a random value from among the
examples.

• DefaultValueProvider: returns the default value of a parameter.
• RandomValueProvider: generates a random value based on the

specification parameter pattern.
• DictionaryValueProvider: chooses a value from the dictionary,

under the condition that a value for a parameter with the same name has
already been observed in the test session.

66

Other input value providers
• NarrowRandomValueProvider: similar to the RandomValueProvider, but

some of the values are generated in a narrower range.

• RequestDictionaryValueProvider: chooses a value for the parameter from a
dictionary of values used for successful requests (i.e. 2XX status code).

• ResponseDictionaryValueProvider: chooses a value for the parameter from
a dictionary of response values observed in previous interactions.

• LastRequestDictionaryValueProvider: is the same as the Request
Dictionary Value Provider, but the value assigned to the parameter is the last one
observed.

• LastResponseDictionaryValueProvider: is equal to the Response
Dictionary Value Provider, but the value that is assigned to the parameter is the last one
observed.

67

Other input value providers 68

+

Create new
playlist

+
Add a song

to the playlist
with id=5

Id=5

Multi-strategy input value provider
• RandomSelectorInputValueProvider: randomly chooses a single-

strategy input value provider from those available and compatible for an input
parameter.

• EnumExamplePriorityInputValueProvider: prioritise enum and
example values as they are more likely to be effective, selecting them with high
probability and selecting the remaining single-strategy providers with lower
probability.

• GlobalDictionaryInputValueProvider: priority is given to the use of a
global dictionary.

• KeepLastIDInputValueProvider: the main objective of this strategy is to
maintain and reuse the last observed ID value for a parameter.

• LocalDictionaryInputValueProvider: priority is given to the use of a
local dictionary. A local dictionary is defined as a dictionary within which values
from a sub-set of TestInteraction have been stored.

69

Fuzzer
• A Fuzzer generates the test sequence(s), including the

operation order and their input values

• NominalFuzzer: simulate different input scenarios to test the
behavior of an operation.

• ErrorFuzzer: simulate erroneous inputs to test the API's error
handling

• MassAssignmentFuzzer: generating sequences to check the
vulnerability of mass assignments

70

Mutation Operators
• A Mutator changes the value of a given parameter, e.g., to

intensify testing on a given operation or to try and make it fails
after it succeeded

71

Mutator

OperationMutator

MutateRandomParameterWith
ParameterMutatorOperationMutator

ParameterMutator

Constraint Violation Parameter Mutator

Missing Required Parameter Mutator

Wrong Type Parameter Mutator

Oracle
• An Oracle makes a decision on a TestSequence, by emitting

a TestResult
• PENDING: the test case has not yet been executed
• PASS: the test case has passed (no defect)
• FAIL: the test case did not pass (defect revealed)
• ERROR: the test case has encountered an error during execution
• UNKNOWN: the oracle is not able to make a decision

72

Available oracles
• StatusCodeOracle

• PASS: 2XX status code
• FAIL: 5XX status code
• UNKNOWN: 4XX status code

• SchemaValidationOracle
• PASS: data in the HTTP response matches schema
• FAIL: otherwise

• MassAssignmentOracle
• FAIL if the vulnerability was successfully exploited twice
• PASS if the exploit attempt was unsuccessful

73

Writer
• Export test sequences to files, e.g., to be used externally

• ReportWriter: executed test sequence as a JSON file,
including the HTTP request/response of each interaction and the
result of the oracle.

• RestAssuredWriter: test sequence as a Java test case in
Java using the RESTAssured library

• CoverageReportWriter: detailed test coverage as JSON file

74

Coverage metrics
Input coverage metrics

• Path coverage
• Operation coverage
• Parameter coverage
• Parameter value coverage
• Request content-type coverage

Output coverage metrics

• Status code class coverage
• Status code coverage
• Response content-type coverage

75

Metrics are computed as defined by Martin-Lopez et al.* with adaptations in some cases to make them
operative.
* A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test coverage criteria for RESTful web APIs,” in Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, 2019, pp. 15–21.

Strategy
• The Strategy is the entry point of the framework
• Represents business logic generating test cases
• Integrates the framework components, possibly after extending

and/or customizing them

76

77

OperationsSorter sorter = new GraphBasedOperationsSorter();
while (!sorter.isEmpty()) {

Operation operationToTest = sorter.getFirst();
NominalFuzzer nominalFuzzer = new NominalFuzzer(operationToTest);
List<TestSequence> nominalSequences = nominalFuzzer.generateTestSequences(

config.getNumberOfSequences());

for (TestSequence testSequence : nominalSequences) {
// Run test sequence
TestRunner testRunner = TestRunner.getInstance();
testRunner.run(testSequence);
// Evaluate sequence with oracles
StatusCodeOracle statusCodeOracle = new StatusCodeOracle();
statusCodeOracle.assertTestSequence(testSequence);

// Write report to file
ReportWriter reportWriter = new ReportWriter(testSequence);
reportWriter.write();
RestAssuredWriter restAssuredWriter = new RestAssuredWriter(testSequence);
restAssuredWriter.write();

}
sorter.removeFirst();

}

78

private TestSequence generateTestSequence() {
editableOperation = operation.deepClone();

resolveCombinedSchemas();
populateArrays();
setValueToLeaves();

// Create a test interaction from the operation
TestInteraction testInteraction = new TestInteraction(editableOperation);

// Encapsulate test interaction into test sequence
TestSequence testSequence = new TestSequence(this, testInteraction);
String sequenceName = !editableOperation.getOperationId().isEmpty() ?

editableOperation.getOperationId() :
editableOperation.getMethod().toString() + "-" + editableOperation.getEndpoint();

testSequence.setName(sequenceName);
testSequence.appendGeneratedAtTimestampToSequenceName();

// Create and return test sequence containing the test interaction
return testSequence;

}

	Title and Outline
	Slide 1: Building your Automated Test Case Generation Tool for REST APIs with RestTestGen
	Slide 2: Credits

	Introduction
	Slide 4: What is a Web API or REST API?
	Slide 5: What is a Web API or REST API?
	Slide 6: OpenAPI Specification
	Slide 7: Problem definition
	Slide 8: Test case
	Slide 9: Testing a web/app ui
	Slide 10: Challenge 1: Operations Testing Order
	Slide 11: Challenge 2: Test Input Values
	Slide 12: Challenge 3: The Oracle Problem

	RestTestGen
	Slide 13: RestTestGen: Automated Black-Box Testing of Nominal and Error Scenarios in RESTful APIs
	Slide 14: Initial testing approach
	Slide 15: Operation Dependency
	Slide 16: Operation Testing Order
	Slide 17: Operation Testing Order
	Slide 18: Input Value Generation
	Slide 19: HTTP Status Code Oracle
	Slide 20: Schema Validation Oracle
	Slide 21: Testing of Error Cases
	Slide 22: HTTP Status Code Oracle

	Deep reinforcement learning
	Slide 23: Deep Reinforcement Learning-Based REST API Testing
	Slide 24: E-Commerce API
	Slide 26: Reinforcement Learning
	Slide 27: Action
	Slide 28: State
	Slide 29: State transition
	Slide 30: Reward: curiosity driven
	Slide 31: Input Generation: Experience Driven
	Slide 32: The Multi-Armed Bandit Problem
	Slide 33: Test Intensification
	Slide 34: DeepREST

	Mass Assignment
	Slide 37: Security Testing of Mass Assignment Vulnerabilities
	Slide 38: Auto-binding
	Slide 39: Approach
	Slide 40: 1. Identification of read-only fields
	Slide 41: 2. Test case generation
	Slide 42: 3. Security oracle

	Reusable research tools
	Slide 43: Evolution towards a reusable research tool
	Slide 44: RestTestGen Framework
	Slide 45: 1. Core components
	Slide 46: 2. Extensible components
	Slide 49: RTG documentation wiki
	Slide 50: Research on fuzzing REST APIs
	Slide 51: RestGym: a compassion testbed for researches
	Slide 52: Testing reports
	Slide 53: Tools competition
	Slide 54: Contributions
	Slide 55: RestTestGen internals
	Slide 56: Configuration file
	Slide 57: OpenAPI parser
	Slide 58: Operation
	Slide 59: Parameter types
	Slide 60: Input/output parameter
	Slide 61: Testcase
	Slide 62: ODG: Operation dependency graph
	Slide 63: Operation sorter
	Slide 64: Operation sorter
	Slide 65: Dictionary
	Slide 66: Input value provider
	Slide 67: Other input value providers
	Slide 68: Other input value providers
	Slide 69: Multi-strategy input value provider
	Slide 70: Fuzzer
	Slide 71: Mutation Operators
	Slide 72: Oracle
	Slide 73: Available oracles
	Slide 74: Writer
	Slide 75: Coverage metrics
	Slide 76: Strategy
	Slide 77
	Slide 78

