
ML4SE Research between 
academia and industry

Egor Bogomolov
ML Research Lead at JetBrains



Contents
➔ Getting to know each other
➔ Development of software development
➔ Research in SE industry
➔ Obstacles on the edge of academia and industry (and how to avoid them)



Letʼs get to know each other



JetBrains Research
ML Division:

➔ Code Modeling
➔ Code Editing
➔ AI Agents & Planning
➔ Federated Compute
➔ Human-AI Experience HAX

Applied Division:
➔ Software Testing
➔ Code Comprehension
➔ Debugging
➔ Automated Program Repair
➔ Dynamic Program Analysis

+ Education Research
+ Collaborations



JetBrains Research
ML Division:

➔ Code Modeling
➔ Code Editing
➔ AI Agents & Planning
➔ Federated Compute
➔ Human-AI Experience HAX

Applied Division:
➔ Software Testing
➔ Code Comprehension
➔ Debugging
➔ Automated Program Repair
➔ Dynamic Program Analysis

+ Education Research
+ Collaborations Iʼm responsible for this part but 

happy to talk about everything 🤝



Machine learning for SE ML4SE
➔ Writing code: auto completion, synthesis, search
➔ Debugging: finding errors, bug fixing, advanced static analysis
➔ Enhancing structure and code quality: generation of comments, commit 

descriptions, refactoring recommendation, suggestion of identifier names
➔ Maintenance and support: finding duplicate issues, bug triage
➔ …



Specifics of ML4SE
➔ Source code is not only text
➔ Available data is not only source code
➔ Solutions should be integrated into everyday tools
➔ Software developers are very picky in their tools
➔ It looks like we have lots of data, but it's not always the case



Whatʼs cool in SE recently?



GitHub Copilot (not recently already)



Coding agents everywhere



Next Edit Suggestions

https://docs.google.com/file/d/1ME2VCgmw_W3oEe1NIz52qCr4B8AKDDeu/preview


ML turned into AI
and became a foundation for many tools

for software developers



But where most of it originated? 
In research!



A few works that led to this (of many and many)
➔ On the Naturalness of Software

➔ Evaluating Large Language Models Trained on Code

➔ Can Language Models Resolve Real-World GitHub Issues?

➔ Learning to Represent Edits

➔ Fast Inference from Transformers via Speculative Decoding

https://people.inf.ethz.ch/suz/publications/natural.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/1810.13337
https://proceedings.mlr.press/v202/leviathan23a


Some works are extremely impactful, even 
though yet to revolutionize industry



How research looks in SE industry



What research means in SE industry

➔ Goal: reduce uncertainty for future development tools

➔ Outputs: methods, prototypes, datasets, evaluation tools, design docs, papers

➔ Measured by: knowledge created & unlocked possibilities

➔ Time horizon: weeks → months → years (portfolio, not a single bet)



Technological and Applied
● Technological research: extend the limits of what's possible with technologies
● Applied research: find the best ways to solve user or product problems end-to-end



SE companies need both

➔ Development of new technologies

➔ Tailoring them to practical tasks

➔ Turning into product features

➔ Find new constraints and repeat

✓ latency, memory, privacy, UX, …



Research has huge impact on the 
advancements in SE tools

Letʼs check when it does not go as smooth



Any practical setting is extremely specific

Research work should generalize to it



When is generalization failing?
➔ Results are hard to reproduce

➔ Overfitting to the benchmark

➔ Missing or unrealistic constraints

➔ Evaluation mismatch in metrics or datasets



Case #1 reproduction
➔ Datasets or scripts are not published

➔ Paper and code diverge

➔ Undocumented modifications to benchmarks



How to make reproduction easier?

- Publish artifacts
- Document your artifacts and decisions



Case #2 overfitting
➔ Many small modifications that result into a marginal improvement

➔ Competition-like squeezing of results

➔ Reward hacking, methods that exploit benchmark imperfections

The SWEBench Illusion: When State-of-the-Art LLMs Remember Instead of Reason

https://arxiv.org/abs/2506.12286v3


How to avoid overfitting?

- Use diverse benchmarks
- Test hypotheses rather than squeeze quality

- Statistical testing, ablation studies



Case #3 unrealistic constraints
➔ Model improves code completion quality…

…at the cost of 100x slower inference 

➔ Solution can find where to move a method…
…but needs an LLM call for each project file

➔ Approach generates amazing tests for a class…
…but requires 1,000s runs of the entire test suite



Why think about constraints?

- Get to know more about the methods
- New ideas for research!

- Making impact with engineering



Case #4 evaluation mismatch

We evaluate to assess solution 
generalizability beyond the training data



Example 1 Data distribution

Repo 1, sample 1
Repo 1, sample 2

…
Repo 1, sample K

Repo 2, sample 1
Repo 2, sample 2

…
Repo 2, sample K

Repo N, sample 1
Repo N, sample 2

…
Repo N, sample K

testing

training



Example 1 Data distribution

Repo 1 Repo 2 Repo N

testing

training



Example 1 Data distribution

Repo 1 Repo 2 Repo N

testing

training



The dataset should reflect the data 
distribution of your ultimate task



What else can go wrong?



Example 2 Data leakages from the past

arxiv.org/abs/2206.03333

http://arxiv.org/abs/2206.03333


Example 2 Data leakages from the past

arxiv.org/abs/2206.03333

Model has not seen this data before
“trainingˮ occurs earlier than the “testingˮ

http://arxiv.org/abs/2206.03333


Example 3 Proxies that you use

Authorship attribution: Motivation

To attribute malware

To fix inaccurate or missing authorship 
information in software projects

To solve the clone detection task directly

Authorship attribution: Utilized datasets

Submissions from programming competitions 
such as Google Code Jam

Repositories from GitHub, single author each

Students’ assignments

arxiv.org/abs/2001.11593

https://arxiv.org/abs/2001.11593


What else do you need for evaluation?



Example 4 Metrics can be tricky



Case #4 evaluation mismatch

➔ Align used data with the desired use cases

➔ Pay attention to metric selection

➔ Test for statistical significance

➔ Benchmark should be well correlated with the target



Should all of it bother you? Not necessarily

But it may open new directions for research



Instead of conclusion, cool work
Conventionally: “Working on new architectures and getting SOTAˮ 💸

Hopefully, after this talk:

➔ Working on high-quality data, evaluation setups, metrics – very cool 👍
➔ Improving over axis other than quality – very cool 👍
➔ Going an extra mile to prepare well-documented artifacts – very cool 👍



To learn more and collaborate:


