
Sustainable Open-Source Ecosystems:

What We've Learned So Far and the Road Ahead

Bogdan Vasilescu

SIESTA Summer School, September 4, 2024

DALL·E 3 - “A selection of strudel pastries with different fillings, including apple, sour cherry, and poppy seed”

About me
@b_vasilescu

Associate Professor @CMU

Director of the Societal Computing PhD
program

STRUDEL research group

2

Open source software has become digital infrastructure

Roads
 and Bridges:

The Unseen Labor Behind
Our Digital Infrastructure

W R I T T E N B Y
Nadia Eghbal

3

Everybody uses open source:

• Fortune 500 companies

• Major software companies

• Startups

• Government

• …

Like any infrastructure, it needs regular upkeep and maintenance

Roads
 and Bridges:

The Unseen Labor Behind
Our Digital Infrastructure

W R I T T E N B Y
Nadia Eghbal

4

https://qz.com/646467/how-one-programmer-broke-the-
internet-by-deleting-a-tiny-piece-of-code/

Everybody uses open source:

• Fortune 500 companies

• Major software companies

• Startups

• Government

• …

If undermaintained:

• Brittle supply chains

• Risks for downstream users

• Slows down innovation

• …

Sustaining
open source

is hard

Ever more open source software is being created (and reused)

Explosion of production in the past 10 years

6

400+ million repositories

100+ million users

(February 2024)

10+ million users

(April 2019)

The social platforms have won
Profile pages for users and projects

Rich inferences about people’s expertise
and level of commitment

Impacts collaboration, but also recruiting
and hiring

• (Dabbish et al. 2012), (Marlow et al. 2013),
(Marlow and Dabbish 2013)

7

CV

There is increasing commercialization and professionalization

• Historically

‣ Community-based projects

(Python, RubyGems, Twisted)

• 23% of respondents to 2017 GitHub survey:
job duties include contributing to open source

http://opensourcesurvey.org/2017/

• More recently, lots of commercial involvement

‣ Companies (Go - Google, React - Facebook, Swift - Apple)

‣ Startups (Docker, npm, Meteor)

8

http://opensourcesurvey.org/2017/

Expectations toward the quality, reliability, and security of open
source infrastructure are high

Equifax (market cap $14 billion) built products
on top of open-source infrastructure, including
Apache Struts

Equifax did not make any contributions to open
source projects

A flaw in Apache Struts contributed to the
breach (CVE-2017-5638)

Equifax publicly blamed (with national news
coverage) Apache Struts for the breach

9

https://www.zdnet.com/article/equifax-confirms-apache-struts-flaw-it-failed-to-patch-was-to-blame-for-data-breach/

High level of demands & stress
Easy to report issues / submit PRs

• Growing volume of requests

Social pressure to respond quickly

• Otherwise, off-putting to newcomers

(Steinmacher et al. 2015)

Entitled, unreasonable users:

• “I have been waiting 2 years for Angular to track

the ‘progress’ event and it still can’t get it right?!?!”
• “Thank you for your ever useless explanations.”

10

Science is needed for evidence-based recommendations

Lots of change

Lots of challenges

Little evidence or theory

11

A great opportunity for research!

… because (almost) everything being
archived and public makes it possible

to study the problem empirically

A great opportunity for research!

… because (almost) everything being
archived and public makes it possible

to study the problem empirically

A great opportunity for research!

“The collection of public Git repositories as a
whole […] exceeds 1.5PB” (Ma et al, 2021)

Ma, Y., Dey, T., Bogart, C., Amreen, S., Valiev, M., Tutko, A., ... & Mockus, A. (2021). World of code: enabling a research workflow for mining and analyzing the universe of open source VCS data.
Empirical Software Engineering, 26, 1-42.

Today: Let’s look at three concrete examples

Estimating a project’s
effective labor pool

Estimating causal effects of
promotional activities

Dealing with abandoned
upstream dependencies

A Closer Look at Abandonment
C. Miller, C. Kästner, and B. Vasilescu. “We feel like we’re winging it:” A
study on navigating open-source dependency abandonment. In International
Conference on the Foundations of Software Engineering (FSE), page 1281–
1293. ACM, 2023.

C. Miller, M. Jahanshahi, A. Mockus, B. Vasilescu, and C. Kästner.
Understanding the Response to Open-Source Dependency Abandonment in
the npm Ecosystem. In International Conference on Software Engineering
(ICSE). IEEE, 2025.

DALL·E 3 - An abandoned bakery. Rotten strudel pastries are lying around

Most prior research has focused on
keeping projects “alive” and maintained.

• Attracting and onboarding new contributors

• Reducing barriers to entry

• Improving the culture

• Improving funding models

…

Maintainers often leave projects for
reasons we can't / shouldn’t prevent

• Switching jobs (voluntarily)

• Starting a family

• Losing interest

…

Research should also focus on helping open-source
maintainers with sunsetting, and helping open-source
users with the effects of that.

How big is the problem?

What do people do to prepare /
deal with it?

DALL·E 3 - An abandoned bakery. Rotten strudel pastries are lying around

Interviews with maintainers of Javascript,
Python, and PHP projects with
abandoned upstream dependencies.

A large-scale quantitative study of
abandoned npm packages.

https://github.com/dimsemenov/Magnific-Popup

https://github.com/dimsemenov/Magnific-Popup

2+ years of activity 2+ years of complete inactivity

Considered “abandoned” here

https://github.com/dimsemenov/Magnific-Popup

2+ years of activity 2+ years of complete inactivity

Considered “abandoned” here

Part 1: Interviews

dependency

adoption

time

Timeline from the perspective of a consumer

24

pre-adoption
considerations

dependency

adoption

time

Timeline from the perspective of a consumer

25

dependency becomes
abandoned

dependency

adoption

time

Timeline from the perspective of a consumer

26

dependency becomes
abandoned

dependency identified
as abandoned

preparations

once adopted

dependency

adoption

time

Timeline from the perspective of a consumer

27

dependency becomes
abandoned

dependency identified
as abandoned

dealing with

abandonment

dependency

adoption

time

Timeline from the perspective of a consumer

28

dependency becomes
abandoned

dependency identified
as abandoned

response to
abandonment

impacts of

abandonment

dependency

adoption

time

Impacts of abandonment are debated

29

dependency becomes
abandoned

dependency identified
as abandoned

response to
abandonment

• Some concrete, e.g., language incompatibilities
(Python 2 to 3), missing needed features

• Many more anticipated, e.g., future updates,
security concerns

• Some expect no meaningful impact

Preparations post-adoption seem rare

30

dependency

adoption

time

dependency becomes
abandoned

dependency identified
as abandoned

response to
abandonment

E.g., building abstraction layers, minimizing dependencies, monitoring

Preparations post-adoption seem rare

31

dependency

adoption

time

dependency becomes
abandoned

dependency identified
as abandoned

response to
abandonment

Not all interviewees considered prep worth the effort

We are basically employing the strategy of

‘if it works it works, if it
breaks then I’ll fix the issues.’
- PID10

dependency

adoption

time

The most common way to deal with abandonment is to switch to
an alternative dependency

dependency becomes
abandoned

dependency identified
as abandoned

response to
abandonment

Another common solution was to
fork or vendor code

fork

seek support from others

switch to alternative

`

Dealing with abandonment typically required trial-and-error

Common theme: Interviewees benefitted from the actions of others

35

Possible solution to
support creation of

community-oriented
solutions?

Migration Discussion

Part 1 Summary:

Every time a project becomes abandoned, or we think it might be

abandoned, we feel like we’re winging it.
We feel like we’re dealing with it for the first time

- PID4

Part 2: Repository Mining

28,100 npm packages out of 1M+ in 2020

had at least one month with 10,000+ downloads

28,100 npm packages out of 1M+ in 2020

had at least one month with 10,000+ downloads

15% (4,108)

became abandoned
Observation window: Jan 2015 to Dec 2020

The distributions of peak download and current star counts for
both abandoned and non-abandoned packages are similar.

The abandoned projects impacted

~280k+ downstreams
on GitHub

The abandoned projects impacted

~280k+ downstreams
on GitHub
of which

~78k+ were still active at
the time

How much do people downstream react?

The rate of removing abandoned dependencies is similar
to random dependency updates, and slower than security
patch updates.

Understanding the Response to Open-Source
Dependency Abandonment in the npm Ecosystem

Courtney Miller
courtneymiller@cmu.edu

Mahmoud Jahanshahi
mjahansh@vols.utk.edu

Audris Mockus
audris@utk.edu

Bogdan Vasilescu
vasilescu@cmu.edu

Christian Kästner

Carnegie Mellon University, Pittsburgh, PA, USA University of Tennessee, Knoxville, TN, USA

Abstract—Many developers relying on open-source digital
infrastructure expect continuous maintenance, but even the most
critical packages can become unmaintained. Despite this, there
is little understanding of the prevalence of abandonment of
widely-used packages, of subsequent exposure, and of reactions
to abandonment in practice, or the factors that influence them.
We perform a large-scale quantitative analysis of all widely-used
npm packages and find that abandonment is common among
them, that abandonment exposes many projects which often do
not respond, that responses correlate with other dependency
management practices, and that removal is significantly faster
when a package’s end-of-life status is explicitly stated. We end
with recommendations to both researchers and practitioners who
are facing dependency abandonment or are sunsetting packages,
such as opportunities for low-effort transparency mechanisms to
help exposed projects make better, more informed decisions.

I. INTRODUCTION

Many widely-used open source packages serve as digital
infrastructure for countless applications downstream [1]. Yet,
much of this infrastructure is maintained by a small number
of overburdened and underappreciated, often volunteer, devel-
opers who may disengage at any point [1]–[3]. Maintainers
often disengage for commonly-occurring reasons [4], such
as losing interest or switching jobs. More often than not,
when that happens, nobody else steps up and the package
becomes fully abandoned [5]. This suggests that dependency
abandonment will always be a risk that users of open-source
infrastructure will be exposed to. And indeed developers
worry about abandonment – e.g., because of the increasing
incompatibility with other changes and fear of not receiving
security patches [6], [7] – to the point that some organizations
have explicit policies to restrict the use of end-of-life software
components. The tension between this widespread reliance on
open source and the lack of certainty surrounding ongoing
maintenance efforts is at the heart of the question of open
source sustainability [1], [7].

Despite the widespread concerns surrounding dependency
abandonment, we know very little about its prevalence or how
developers react in practice. Research has primarily focused
on preventing or predicting abandonment by reducing disen-
gagement [4], [5], [8] or improving onboarding [9]–[11], rather
than studying what happens when abandonment occurs. A key
exception is our recent interview study with developers where
we studied their perceptions of abandonment, but without
quantifying the prevalence or reactions in practice [7].

0.00

0.25

0.50

0.75

1.00

0 25 50 75
Delay (In Months)

Su
rv

iva
l P

ro
ba

bi
lit

y Abandonment
Update
Security Patch

Fig. 1. Survival probability for event “dependency event is not resolved”
w.r.t. the date of event occurrence within dependent project’s lifetime.

In this paper, we report on a large-scale, quantitative study
exploring the prevalence of, impact of, and response to the
abandonment of widely-used packages in the JavaScript npm
ecosystem. Specifically, we design an approach to detect aban-
donment at scale, collect a large sample of dependent projects
that were exposed to abandonment across all of GitHub,
and observe their responses to abandonment. We compare
reactions to abandonment with other dependency management
practices of updating dependencies with and without known
vulnerabilities. Finally, we use statistical modeling to investi-
gate what factors impact likelihood and speed of abandoned
dependency removal.

Even with a conservative operationalization, we find that the
abandonment of widely-used packages is prevalent, with 15%
of widely-used packages becoming abandoned within our six-
year observation window. Those abandoned packages expose
many dependents, but average direct exposure even for widely-
used packages is lower than might be expected, suggesting
that collaborative responsible sunsetting strategies might be
feasible. Developers seem to care about abandonment – 18%
of exposed projects remove the abandoned dependency, which
is roughly comparable with other dependency management
practices such as installing updates (cf. Fig. 1), but reactions
to abandonment tend to be delayed – in fact, removal of
abandoned dependencies strongly correlates with other good
development practices, including regular dependency updates.
Finally, making the abandonment status of a package clear
can help exposed projects react faster (58% higher chance of
reaction on average, at any point in time), suggesting opportu-
nities for low-effort transparency mechanisms to help exposed
projects make better, more informed decisions. Overall, our
results suggest many opportunities to foster responsible use

Which factors correlate with downstream projects
reacting faster?

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Factors

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Magnitude of correlation

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Automation: no effect

Project size: no effect

Corporate involvement: no effect

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Six governance best practices: having a README, a
license, issue templates, pull request templates,
contributing guidelines, and a code of conduct

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Updates to dependencies in the year before exposure

Average lag of dependencies

B. Model Results
Regression results in Fig. 4 show five significant effects.

One is a strong positive effect of governance maturity (sup-
porting H6): For projects with one standard deviation higher
governance maturity score we expect to see about 43% in-
crease in the odds of removing the abandoned dependency.
The model also shows that higher technical lag is, on aver-
age, statistically significantly negatively associated with the
likelihood of removal (supporting H2).

Projects with higher dependency churn are generally more
likely to remove abandoned dependencies (supporting H3). To
demonstrate the interpretation of the exponentiated regression
coefficient, for every factor e (' 2.72) increase in the amount
of dependency churn (note the log transformation), the odds of
removing the abandoned dependency for the average project
in our sample multiply by 1.15, holding all else constant.
Additionally, as expected we observed a significant effect for
both control variables project age and project size.

The explanatory variables num dependencies (H1), use of
dependency management tools (H2), num commits (H3), num
maintainers (H4), and num corporate commits (H5) were not
significant in the model meaning we have insufficient evidence
to reject the null hypothesis that these factors do not impact
the likelihood of abandoned dependency removal.

Key Insights: Projects that are more mature, have higher
dependency churn, and keep more up to date on dependency
updates are more likely to remove abandoned dependencies
within two years.

VII. RQ4: INFLUENCE OF ANNOUNCING ABANDONMENT

A. Research Methods
RQ4 extends RQ2 and RQ3 using the same data as RQ2,

except we model the distinction in responses to packages
that were explicitly declared as abandoned (explicit-notice) as
compared to packages that just stopped maintenance (activity-
based) as introduced in Sec. III. Similarly to RQ2, we again
apply survival analysis to model the time to removal of the
abandoned dependencies, except now we use a multivariate
Cox proportional-hazards model [88] to jointly control for all
factors modeled in RQ3 (see Sec. VI-A for factor definitions).
Cox regression is commonly used in medical research for
modeling the association between the survival time of patients
and one or more predictor variables. In our case, we use
Cox regression to estimate the effect of an explicit notice
of abandonment on the rate of dependency removal events
happening at a particular point in time, i.e., the “hazard rate.”

B. Results
We observe after controlling for all the factors we hypoth-

esized are associated with removing abandoned dependencies
in RQ2, that there is a statistically significant relationship
between the presence of an explicit notice of abandonment
for a given dependency and an increased likelihood of
the abandoned dependency being removed by downstream
projects (cf. Fig. 5). Holding the other covariates constant,

HR = 0.98

HR = 1.07

HR = 1.07

HR = 0.88

HR = 0.93*

HR = 1.16***

HR = 1.01

HR = 0.9***

HR = 1.21**

HR = 1.58***
Detection = Explicit Notice

Governance Maturity

Has Corporate Commits

Technical Lag (log)

Num Commits (log)

Num Maintainers (log)

Project Age (log)

Project Size (log)

Dependency Churn (log)

Uses Dep. Mgmt. Tools

0.0 0.5 1.0 1.5 2.0
Hazard Ratio Estimate (***p < 0.001, **p < 0.01, *p < 0.05)

Time to Removing Abandoned Dependencies

Fig. 5. Summary of the Cox proportional hazards multivariate survival regres-
sion modeling the time to removing an abandoned dependency. Confidence
intervals (horizontal lines) for the hazard ratios (HR) that do not intersect 1
indicate variables with statistically significant effects.

having an explicit notice increases the removal hazard by
a factor of 1.58, or 58%, with a 95% confidence interval
of 1.26 to 1.98. This is in alignment with our expectations,
because explicit-notice abandoned packages provide a clear
signal to dependents and are more visible sooner.

Key Insights: Packages that provide an explicit-notice of
abandonment tend to be removed at significantly faster rates
compared to those that do not.

VIII. DISCUSSION AND IMPLICATIONS

The Scale of Abandonment. Our study finds that abandon-
ment, even among widely-used npm packages, is fairly com-
mon. While many developers carefully analyze signals like the
number of stars, responsiveness to issues, or number of con-
tributors when adopting dependencies [61], [89] and past stud-
ies have shown several statistical predictors for survival [5],
[66], [68], we were surprised by the scale of abandonment
among packages that had healthy signals, were among the
most popular packages on npm, and were generally similar
in their distribution of stars and past activity to those with
sustained maintenance. Given that open source maintainers
may disengage for all sorts of reasons, such as losing interest,
changing jobs, and starting a family [4], users of open source
are likely not able to entirely escape abandoned dependencies
with careful upfront vetting, but may also need to actively
consider strategies to manage abandoned dependencies – an
area also called for in our recent interview study [7] for which
maintainers have with little existing support.
The Rippling Effects of Abandonment. Although
abandonment rates are fairly high, we were surprised at
the low rates of direct exposure. While GitHub’s Dependency
Insights page often show thousands to hundreds of thousands
of dependent projects for the abandoned packages, the actual
direct exposure of active dependent projects at the time of
abandonment was not that high (µ = 19, cf. Sec. IV-B).
Many additional dependents of abandoned packages were
abandoned even before the package’s abandonment, so they

9

Strongest effect: Explicit notice of abandonment

(Github archive flag, no-maintenance-intended badge, other mention in README)

http://unmaintained.tech

Conclusion:
• Abandonment, even among widely-used npm packages, is fairly common.

• It can have rippling effects, especially when considering transitive impact.

• People seem to care about abandoned dependencies (many remove them), but may

not notice them. It’s also unclear what to do after.

• At the very least, we recommend that:

• Maintainers place an explicit notice of abandonment somewhere visible.

• Platforms implement features to help with migration.

• It’s time to establish best practices for responsible sunsetting of packages, rather
than insisting on indefinite maintenance!

53

Labor Pools
Fang, Herbsleb, and Vasilescu, “Matching Skills, Past Collaboration, and
Limited Competition: Modeling When Open-Source Projects Attract
Contributors.” ESEC/FSE 2023

Strudels with sour cherry, apricot cheese, and poppy seed filling, Strudel House Cafe, Budapest, Hungary 2017

How to attract
new contributors?

Key question:

55

• Low barrier to first contribution

• Perceived welcomeness to newcomers

• Quality of README

• Current project popularity

…

Many project-level factors associate with the likelihood of
attracting new contributors

Open-source projects form complex networks of interdependencies!

56

Can we measure the network effects?

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

57

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

58

Hyp: Projects attract more
new contributors …

… the larger the labor pool

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

59
https://github.com/about

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

60

Hyp: Projects attract more
new contributors …

… the larger the labor pool

… the better the match
between the project’s needs
and the contributors’ skills

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

61

Hyp: Projects attract more
new contributors …

… the larger the labor pool

… the better the match
between the project’s needs
and the contributors’ skills

… the stronger the pre-existing
social connections to current
project maintainers

New construct: a project’s labor pool — the set of active participants in the
overall ecosystem that the project could attempt to recruit from at a given time

62

Hyp: Projects attract more
new contributors …

… the larger the labor pool

… the better the match
between the project’s needs
and the contributors’ skills

… the stronger the pre-existing
social connections to current
project maintainers

… and the less competition there is
with other projects the same people
could contribute to

63

Key labor pool operationalization idea: the collaboration network

Key labor pool operationalization idea: the collaboration network

64

Key labor pool operationalization idea: the collaboration network

65

Key labor pool operationalization idea: the collaboration network

66

One hop captures 61-65% of everyone identifiable within three hops.

67

A�racting Open-Source Project Contributors: Matching Skills, Past Collaboration, and Limited Competition ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

0.23 0.10 0.05 0.62

0.21 0.09 0.04 0.65

0.21 0.10 0.04 0.65

0.20 0.08 0.04 0.68

0.19 0.07 0.03 0.70

0.20 0.08 0.03 0.692020

2019

2018

2017

2016

2015

one hop two hops three hops four or more hops (or not connected)

Figure 2: Percentage of new contributions from di�erent
network distances to the existing developers, across years.

modeling needs, while at the same time keeping the data volume
and the computation needed for the analysis tractable.

4.2 Overview of the Analysis
Given these key design decisions, we structure our study in two
parts, as summarized in Figure 1. Both parts involve regression
models explaining the tendency and number of new developers
joining projects in a next time period as a function of the sets of
factors we formulate explicit hypotheses about, via their corre-
sponding variables computed in a current time period. In the �rst
part we take a developer-centric view — from the perspective of
an individual developer, they typically have a choice of projects
they could contribute to and a range of projects they’re in the labor
pool for, based on past collaborations. In the second part we take
a project-centric view, aggregating individual-level e�ects to the
level of the whole ecosystem, to reason about project labor pool
characteristics and competition e�ects.

First, we estimate the relative importance of the three sets of
factors we formulate explicit hypotheses about6 — the strength
of social connections to existing project members (H2), the �t be-
tween one’s technical background and the focal project (H3), and
the amount of competition (or choice one has) between available
projects with similar technical �t (H4, H5) — at the individual
level. To do this, we start by computing a data frame of (labor-pool-
developer, focal-project) pairs, with measurements of the relevant
variables (details below) for every developer in a given project’s
labor pool, across all projects in our sample; we also record a binary
outcome variable indicating whether or not that developer joined
the project in the next period. Using this data, we then construct a
logistic regression model explaining the developers’ tendency to
join a focal project in the next year as a function of the variables
of interest; the labor pool is operationalized as described above,
i.e., people one-hop away from the focal project’s developers. We
refer to variations of this logistic regression model (under di�erent
speci�cations) as individual models.

Note that the goal here is not to make individual predictions
about any one developer’s tendency to join a given project in the
next time period. Rather, the goal is to estimate the relative impor-
tance of the three sets of factors of interest, on average, across a
large sample, such that we can reuse these ‘weights,’ i.e., the es-
timated V coe�cients from the logistic regression model, in the

6Excluding H1 , which refers to the labor pool size, rather than its composition.

second part of our analysis. For example, we estimate how much
the technical background �t explains the joining tendency of an
average developer, compared to the strength of social connections
and the amount of competition from other projects, over a large
sample. Because we estimate the logistic regression over a very
large sample, we can assume that these coe�cients are stable,7 so
we estimate only one set of individual models8 to be used as input
for the second part.

Next, we lift9 the individual-level analysis to the project level by
estimating regressions that explain the number of new developers
joining projects in a next year as a function of their labor pool
characteristics (and control variables) in the current year. We refer
to these models as project models and we use them to formally
test all our hypotheses H1–H5.

To ensure the robustness of our conclusions, we repeat this
analysis for all the complete pairs of consecutive years in our data,
from 2015–2016 to 2020–2021. In the end, we quantify the amount of
variance that the labor pool characteristics explain when modeling
the number of new contributors a project will receive, interpret the
results, and discuss the implications of our �ndings.

4.3 Data Collection and Filtering
We mine our data from the World of Code (WoC) dataset [45],
which contains the git commit traces for all public projects hosted
on GitHub, Gitlab, Bitbucket, SourceForge, and many other smaller
ones. We expect that World of Code should give better coverage
of open-source development compared to other datasets typically
used in prior research.

To begin with, we de�ne the open-source Python ecosystem as
containing all repositories with over 50% of their �les written in
the Python language. We then apply several �lters to de-noise the
data, as typical with mining software repositories research [41].

First, we �lter out repositories with fewer than 10 commits that
involve changes to library import statements, i.e., adding or re-
moving dependencies. This step is needed because we later use
this dependency information to characterize the technical needs
of projects, i.e., we assume that a project using certain libraries
requires contributors with experience in those libraries. We chose
the threshold arbitrarily, balancing a desire to retain a large sample,
on the one hand, with an attempt to �lter out trivial projects (code
dumps, homework solutions, etc) and a need for ‘enough’ data for
the subsequent embeddings-based approach to work. Similarly, we
�lter out developers from labor pools if they authored fewer than
10 commits that involve changes to library import statements, for
analogous reasons. As a robustness validation, we run the same
analysis over datasets where projects and authors with less than
100 commits that involve change of packages are removed, and
the results are qualitatively similar (See the replication package for
validation study).

Second, we made sure to use the de-aliased activity records
from the World of Code dataset, which provides both raw data on
commit authors as well as data on de-aliased commit authors, after
merging developer identities when they use di�erent aliases; see

7We discuss robustness checks for this assumption below.
8We computed all independent variables in 2014 and the outcome variable in 2015.
9The estimated V coe�cients from the individual models enable this aggregation.

Labor pool operational definition: everyone one hop away in the
collaboration network from current project contributors

68

Labor pool operational definition: everyone one hop away in the
collaboration network from current project contributors

69

For each of these people, we estimate the strength of their social connection to the focal
project contributors and their skill match to the focal project, both absolutely and relatively.

Cosine distance between the developer’s and the project’s
embeddings as a proxy for skill match.

70

Developer perspective:

• json

• numpy

• …

across all commits to all
projects contributed to

We mine package imports from the commit history to compute technical need / skill
(Doc2Vec) embeddings of developers and projects.

Project perspective:

• json

• numpy

• …

across all commits to
the project

Relative ranking on social connection and technical fit as a proxy
for standing with respect to competitors.

71

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Fang, Herbsleb and Vasilescu.

Table 1: The de�nitions of variables in the individual model

Variables related to social connections
Social strength The total number of projects one has worked

on with any of the current project developers.
Variables related to technical �t
Technical similarity The similarity between one’s technical back-

ground and the project’s technologies.
Variables related to competition e�ects
Number of competing
projects

The total number of projects one is in the labor
pools for.

Relative advantage in
social connection

The percentile of the Strength of social connec-
tion variable de�ned above.

Relative advantage in
technical similarity

The percentile of the Technical �t variable de-
�ned above.

Fry et al. [33] for details on the random forest model used to merge
developer aliases based on their user IDs. It is important to use the
de-aliased activity records because the volume of developer aliases
in such data may skew our measurements of project contributors
and experience with Python libraries [3].

Finally, we also make a best e�ort attempt to �lter out bots and
unidenti�able accounts together with their associated commit ac-
tivities, for similar reasons [75]. Speci�cally, we use three heuristics
to identify bot-like accounts. First, we reuse a list of 13,169 bot ac-
counts in theWorld of Code dataset compiled by Dey et al. [24] after
developing a machine learning classi�er for this purpose, based on
author names, commit messages, �les, and projects modi�ed by the
suspected bot account. Second, we convert all account usernames
into lowercase characters and use string matching to �ag as bots
those with the last part of their username being -bot or -robot. Third,
we order all developer accounts in our dataset based on the num-
ber of commits they made, and we manually evaluate the top 100
accounts. This revealed a few additional bot-like and unidenti�able
accounts such as GitHub Merge Button <merge-button@github.com>.
Overall, all these commit authors are excluded from our analysis.

4.4 Part I: Individual Models
As discussed brie�y above, we use logistic regression to model
the factors associated with the individual tendency to join a focal
project, across all (labor-pool-developer, project) pairs in our sample.
The full model is speci�ed as:

% (�8?~) = logit(V0%?~�1 + V1(8?~�1 + V2)8?~�1 + V3⇠8?~�1), (1)

where % (�8?~) is the likelihood that developer 8 joins project ?
in year ~, and independent variables (8?~�1,)8?~�1, and ⇠8?~�1
represent the social connection between potential contributor 8
and the existing developers of project ? , the technical background
�t between developer 8 and project ? , and the factors relating to
the competitive advantage of project ? among the set of projects
developer 8 can potentially join, respectively, all computed in year
~ � 1. Table 1 gives de�nitions of the variables in the model; we
expand on how we operationalized the variables below.

Technical fitness Social connection
Project A 0.2 6
Project B 0.3 3
Project C 0.05 2
Project D 0.8 1

Technical fitness

DBAC
(0%) (25%) (50%) (75%)

Social connection

ABCD
(0%) (25%) (50%) (75%)

(a)

(b) (c)

Figure 3: Illustration of the project relative advantage.

Modeling Considerations. For simplicity, since the estimated V
coe�cients are stable, we compute only one individual model for
~ � 1 = 2014 and reuse the coe�cients throughout Part II.

We also restrict our sample only to the labor-pool developers
who were active (i.e., made at least one commit) in 2014, because
developers who are inactive for more than one year tend to have
a low probability to make commits in future years [16]. Until the
end of 2014, there are 104,899 Python developers in our sample
who made at least 10 valid commits with changes to import state-
ments, and were active in 2014. For each developer, we identify the
projects whose labor pools the developer was part of, and model
their tendency to join those projects in 2015. Since some developers
may be in the labor pools of a large number of projects, for each
developer, we randomly sample 30% of the labor pools they are part
of. Consequently, we also exclude developers who are part of the
labor pools of less than four projects, to ensure that at least one
project per person is sampled. In total, we have 47,788 developers
and 5,778,144 (developer–project) observations in our sample.

Finally, given the inherently nested structure of our data (the
same developer being in the labor pool for multiple projects), we
make clustering adjustments in the standard errors at both the
project and developer levels to account for the possible within-
cluster correlation [1].
Measuring the Technical Fit Between Projects and Develop-
ers. The �t between project technical requirements and individual
technical background is hypothesized to be an important factor
in�uencing the developer joining behavior. We use the packages
(or libraries) a project imports to measure the technical requirement
of a project, and the packages imported in past code commits of
a developer to measure their technical skills. While prior research
used the programming language as a proxy for technical skills [18],
this coarse-grained measure is not suitable for our study as all the
projects in our sample are mostly written in Python.

The World of Code dataset contains dependency information
extracted from each commit (i.e., the packages that a commit im-
ports).10 Therefore, we can obtain the packages that a project de-
pends on, and the packages that a developer has used in their past
commits. Following Dey et al. [23], we then train a Doc2Vec model
to obtain the technical skill embedding of developers and projects.

10https://github.com/woc-hack/tutorial

Developer
perspective:

Where does this
project stand
relative to my
other options?

Project
perspective:

Where do I stand
relative to my
“competitors”?

Two-stage regression modeling: individual level + project level

72

Individual level:

(Logistic regression)

Will this developer contribute to
the project next year?

Project level:

(Negative binomial regression)

How many new contributors can the
project expect next year?

How big is the effective labor pool?

Social connection strength, technical skill match, and amount of
competition all explain variance in new contributors joining.

27% more variance explained by model
with network effects vs only project-level
characteristics

Individual-level effects (bottom 50% vs top 50%)

• Social connection strength ……

• Technical skill match ……………

• Competition ……………………

73

Technical
skill match

Social connection
strength

Change in joining probability (y times)

6.95 x

3.20 x

-2.40 x

Fine print: Models estimated across 5.78M (contributor, project) pairs. Starting data is all public git repositories in World of Code with 50%+ of their files written in Python,
and 10+ commits with import statements.

Conclusion: A network-centric perspective reveals interesting
ecosystem-level dynamics.

74

Conclusion: A network-centric perspective reveals interesting
ecosystem-level dynamics.

75

Qiu, Nolte, Brown, Serebrenik, and Vasilescu. “Going farther together: The impact of social capital on sustained participation in open source.” ICSE 2019
Distinguished Paper Award.

Why do women on
GitHub disengage
earlier than men?

Conclusion: A network-centric perspective reveals interesting
ecosystem-level dynamics.

76

Continuous
integration

Dependency
management

Code coverage
reporters

Cross browser
testers

Travis
Circle
Appveyor
Codeship

David
Bithound
Gemnasium

Coveralls
Codeclimate
Codecov
Codacy

Saucelabs

dependencies

committer

watcher pull req

committer
R2

R4R3

R6

R1 R7

dependency
similarity

R5
description
similarity

Heterogeneous network Hazard modeling (Cox regression)

12 popular quality assurance tools ~86,000 npm package
repositories

For
each
tool:

Lamba, Trockman, Armanios, Kästner, Miller, and Vasilescu. “Heard it through the Gitvine: An empirical study of tool diffusion across the npm ecosystem.
ESEC/FSE 2020.

How do tools and
practices spread
through the network?

Causal Effects of Tweeting
Fang, Lamba, Herbsleb, and Vasilescu. “‘This is damn slick!' Estimating the
impact of tweets on open source project popularity and new contributors.”
ICSE 2022. Distinguished Paper Award.

Apple strudel, Beek Cafe, Baden-Baden, Germany 2017

Do tweets cause GitHub stars (and new contributors)?

78

That’s all we need, unless you’d like to set customization options.
By embedding Twitter content in your website or app, you are agreeing to the Developer Agreement and Developer Policy.

Max Woolf
@minimaxir · Follow

I just released my new Python package: simpleaichat, an
open-source tool for working with ChatGPT/GPT-4 with
minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain
and aim to make it the easiest way to make AI apps.

github.com
GitHub - minimaxir/simpleaichat: Python package for easily interfacin…
Python package for easily interfacing with chat apps, with robust
features and minimal code complexity. - GitHub - …
minimaxir/simpleaichat: Python package for easily interfacing with chat

5:24 PM · Jun 8, 2023

737 Reply Share

Read 18 replies

<blockquote class="twitter-tweet"><p lang="en" dir="ltr">I just released my new Python package: simpleaichat, an open-source tool for working with ChatGPT/GPT-4 with minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain and aim to make it the easiest way to make AI apps. https://t.co/ehDD5Nx0qv</p>— Max Woolf (@minimaxir) June 8, 2023</blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Copy Code

minimaxir / simpleaichat Public

1 Branch 6 Tags Go to file Go to file Code

Remove option param… 569dbf5 · last month 136 Commits

.github GitHub sponsorship 8 months ago

docs README images 8 months ago

examples redesign coding notebook f… 8 months ago

simpleaichat Remove option parameter f… last month

.gitignore working packahe 9 months ago

LICENSE year bump 2 months ago

PROMPTS.md last minute README tweaks 8 months ago

README.md fix typo in README.md 7 months ago

setup.py bump version to 0.2.2 7 months ago

About

Python package for easily interfacing
with chat apps, with robust features and
minimal code complexity.

ai # chatgpt

 Readme

 MIT license

 Activity

 3.3k stars

 34 watching

 215 forks

Report repository

Releases 6

v0.2.2: Misc fixes/improveme… Latest

on Jul 23, 2023

+ 5 releases

Sponsor this project

minimaxir Max Woolf

patreon.com/minimaxir

simpleaichat

Code Issues 47 Pull requests 5 Actions Projects Security Insights

 main

minimaxir

from simpleaichat import AIChat

README MIT license

~300

June 8,
2023

Feb 25,
2024

June 9,
2023

3.3k

Do Nicolas Cage movies cause drowning?

79

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations

Idea: Measure how much a group mean changes before and after
an intervention

80

85 - 50 = 35 new ?

Better idea: Compare that change to the change in an appropriate
control group

81

Effect of
the tweets

Effect of
something

else

Counterfactual

Card and Krueger (1993) natural experiment to study how
increasing the minimum wage affects employment.

82

4(8) THE PRIZE IN ECONOMIC SCIENCES 2021 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � WWW.KVA.SE

Understanding labour markets
The e!ects of a minimum wage
In the early 1990s, the conventional wisdom among economists was that higher minimum wages
lead to lower employment because they increase wage costs for businesses. However, the evidence
supporting this conclusion was not fully convincing; there were indeed many studies that indicated
a negative correlation between minimum wages and employment, but did this really mean that
higher minimum wages led to higher unemployment? Reverse causation could even be the issue:
when unemployment rises, employers can set lower wages which, in turn, may lead to demands to
increase the minimum wage.

To investigate how increased minimum wages a&ect employment, Card and Krueger used a natu-
ral experiment. In the early 1990s, the minimum hourly wage in New Jersey was raised from 4.25
dollars to 5.05 dollars. Just studying what happened in New Jersey after this increase does not give
a reliable answer to the question, as numerous other factors can in)uence how employment levels
change over time. As with randomised experiments, a control group was needed, i.e., a group where
wages didn’t change but all the other factors were the same.

Card and Krueger noted that there was no increase in neighbouring Pennsylvania. Of course, there
were di&erences between the two states, but it is likely that the labour markets would evolve similarly
close to the border. So, they studied the e&ects on employment in two neighbouring areas – New Jersey

Card and Krueger used a natural experiment
to study how increasing the minimum wage
affects employment.

The researchers identified a treatment group
(restaurants in New Jersey) and a control group
(restaurants in eastern Pennsylvania) to measure
the effect of increasing the minimum wage.

The effect of increasing the minimum wage

NEW JERSEY

PENNSYLVANIA

CONTROL GROUP TREATMENT GROUP

1 April 1992: The hourly minimum wage in
New Jersey was increased from 4.25 dollars
to 5.05 dollars. Despite this, employment in
New Jersey was not affected.

New Jersey
Eastern Pennsylvania

Em
pl

oy
m

en
t (

fe
b

19
92

=1
)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Oct -91 Oct -92 Oct -93 Oct -94 Oct -95

https://www.nobelprize.org/uploads/2021/10/popular-economicsciencesprize2021-2.pdf

4(8) THE PRIZE IN ECONOMIC SCIENCES 2021 � THE ROYAL SWEDISH ACADEMY OF SCIENCES � WWW.KVA.SE

Understanding labour markets
The e!ects of a minimum wage
In the early 1990s, the conventional wisdom among economists was that higher minimum wages
lead to lower employment because they increase wage costs for businesses. However, the evidence
supporting this conclusion was not fully convincing; there were indeed many studies that indicated
a negative correlation between minimum wages and employment, but did this really mean that
higher minimum wages led to higher unemployment? Reverse causation could even be the issue:
when unemployment rises, employers can set lower wages which, in turn, may lead to demands to
increase the minimum wage.

To investigate how increased minimum wages a&ect employment, Card and Krueger used a natu-
ral experiment. In the early 1990s, the minimum hourly wage in New Jersey was raised from 4.25
dollars to 5.05 dollars. Just studying what happened in New Jersey after this increase does not give
a reliable answer to the question, as numerous other factors can in)uence how employment levels
change over time. As with randomised experiments, a control group was needed, i.e., a group where
wages didn’t change but all the other factors were the same.

Card and Krueger noted that there was no increase in neighbouring Pennsylvania. Of course, there
were di&erences between the two states, but it is likely that the labour markets would evolve similarly
close to the border. So, they studied the e&ects on employment in two neighbouring areas – New Jersey

Card and Krueger used a natural experiment
to study how increasing the minimum wage
affects employment.

The researchers identified a treatment group
(restaurants in New Jersey) and a control group
(restaurants in eastern Pennsylvania) to measure
the effect of increasing the minimum wage.

The effect of increasing the minimum wage

NEW JERSEY

PENNSYLVANIA

CONTROL GROUP TREATMENT GROUP

1 April 1992: The hourly minimum wage in
New Jersey was increased from 4.25 dollars
to 5.05 dollars. Despite this, employment in
New Jersey was not affected.

New Jersey
Eastern Pennsylvania

Em
pl

oy
m

en
t (

fe
b

19
92

=1
)

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Oct -91 Oct -92 Oct -93 Oct -94 Oct -95

https://www.nobelprize.org/uploads/2021/10/popular-economicsciencesprize2021-2.pdf

Aside: Are we 20 years behind on empirical methods in SE?

83

“This Is Damn Slick!” Estimating the Impact of Tweets on
Open Source Project Popularity and New Contributors

Hongbo Fang, Hemank Lamba, James Herbsleb, Bogdan Vasilescu
Carnegie Mellon University, USA

{hongbofa,hlamba,jdh,bogdanv}@cs.cmu.edu

ABSTRACT
Twitter is widely used by software developers. But how e�ective
are tweets at promoting open source projects? How could one use
Twitter to increase a project’s popularity or attract new contribu-
tors? In this paper we report on a mixed-methods empirical study
of 44,544 tweets containing links to 2,370 open-source G��H��
repositories, looking for evidence of causal e�ects of these tweets
on the projects attracting new G��H�� stars and contributors, as
well as characterizing the high-impact tweets, the people likely
being attracted by them, and how they di�er from contributors
attracted otherwise. Among others, we �nd that tweets have a sta-
tistically signi�cant and practically sizable e�ect on obtaining new
stars and a small average e�ect on attracting new contributors. The
popularity, content of the tweet, as well as the identity of tweet
authors all a�ect the scale of the attraction e�ect. In addition, our
qualitative analysis suggests that forming an active Twitter commu-
nity for an open source project plays an important role in attracting
new committers via tweets. We also report that developers who
are new to G��H�� or have a long history of Twitter usage but
few tweets posted are most likely to be attracted as contributors to
the repositories mentioned by tweets. Our work contributes to the
literature on open source sustainability.
ACM Reference Format:
Hongbo Fang, Hemank Lamba, James Herbsleb, Bogdan Vasilescu. 2022.
“This Is Damn Slick!” Estimating the Impact of Tweets on Open Source
Project Popularity and New Contributors. In 44th International Conference
on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3510003.3510121

1 INTRODUCTION
In open-source software (OSS) development, attention can be a
double edged sword. Sometimes, OSS projects receive too much
attention, andmaintainers have to deal with overwhelming volumes
of requests and demands from users [25]; in these cases, maintainers
might rather fend o� new attention coming their way. Other times,
even successful OSS projects are unable to attract more than a
few contributors, and occasionally OSS projects are maintained by
no one at all [3, 17]; in these cases, more sustained involvement
from users and contributors would be welcome. Yet, for many OSS
projects, gaining attention from the community, e.g., to increase
adoption and attract more contributors, remains a challenge.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, P A, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510121

Several mechanisms through which OSS projects can gain atten-
tion [11, 40, 68] and attract new contributors [9, 40, 53] have been
studied in the past. The literature is especially rich in recent years,
in the context of social coding platforms like G��H��, because of
the high level of transparency and many opportunities for project
maintainers to signal, explicitly and implicitly, about their work [20].
For example, prior studies of OSS projects hosted on G��H�� have
found that how projects organize their repository homepages and
README �les [53], whether projects get featured by the hosting
platform [40], whether projects have public releases [10], and how
maintainers use prominent repository badges to indicate less ob-
servable project qualities [68], all have an impact on how the project
is perceived by its audience and even the actions that some audience
members take, e.g., joining the project.

However, prior work has, by and large, focused only on endoge-
nous or “in-network” attention eliciting mechanisms, i.e., taking
actions or displaying signals a�orded by the code hosting platform
itself. This leaves an important gap—little is known about attention
eliciting mechanisms that can be considered exogenous from the
perspective of OSS projects hosted on G��H�� or similar platforms.
Here we focus on one such mechanism, social media. Social media
platforms, widely used by software developers [65], enable OSS
maintainers to share their work with a potentially larger audience,
that exists beyond their immediate connections on any code host-
ing platform; e.g., social media posts about an OSS project may be
ampli�ed by the authors’ social networks, in�uential social media
users, or the platform itself. Social media platforms also tend to
have low barrier to participation and high viewership, which makes
them actionable and potentially impactful for OSS maintainers, ad-
mirers, and evangelists looking to attract attention to projects in
need. A better understanding of the e�ectiveness of using social
media to attract attention to OSS projects could directly impact the
projects’ success and sustainability.

Yet, little is known about how much social media activity can
contribute to OSS sustainability, if at all. The evidence from other
contexts suggests that actions taken on social media platforms can
have spillover, out-of-network e�ects; e.g., researchers have found
that tweets can predict movie ratings [48] and increase citations to
academic papers [39]. Can similar e�ects be expected for OSS?

To address this gap, in this paper, we compile a large dataset
of 44,544 tweets containing links to open source G��H�� reposito-
ries,1 spanning 6 months of history, and with cross-links between
user pro�les on both platforms. We then apply statistical causal
inference techniques to: (a) estimate the causal e�ect of tweets
on the number of new G��H�� repository stars and new commit-
ters; (b) characterize the tweets with the highest impact; and (c)
characterize the OSS contributors attracted by these tweets.

1The title quote was part of one such tweet; see O5 in Figure 4 in the Appendix.

Do Developers Discover New Tools On The Toilet?
Emerson Murphy-Hill

Google, LLC
emersonm@google.com

Edward K. Smith*

Bloomberg
tedks@riseup.net

Caitlin Sadowski
Google, LLC

supertri@google.com

Ciera Jaspan
Google, LLC

ciera@google.com

Collin Winter*

Waymo
collinwinter@waymo.com

Matthew Jorde
Google, LLC

majorde@google.com

Andrea Knight
Google, LLC

aknight@google.com

Andrew Trenk
Google, LLC

atrenk@google.com

Steve Gross
Google, LLC

stevegross@google.com

Abstract—Maintaining awareness of useful tools is a
substantial challenge for developers. Physical newslet-
ters are a simple technique to inform developers about
tools. In this paper, we evaluate such a technique, called
Testing on the Toilet, by performing a mixed-methods
case study. We first quantitatively evaluate how effec-
tive this technique is by applying statistical causal in-
ference over six years of data about tools used by thou-
sands of developers. We then qualitatively contextual-
ize these results by interviewing and surveying 382 de-
velopers, from authors to editors to readers. We found
that the technique was generally effective at increasing
software development tool use, although the increase
varied depending on factors such as the breadth of ap-
plicability of the tool, the extent to which the tool has
reached saturation, and the memorability of the tool
name.

I. Introduction
Tools can help increase developer productivity by in-

creasing velocity and code quality. For instance, tools can
find concurrency bugs [28], reduce the effort to analyze
customer feedback [14], and help configure caching frame-
works [10]. With an increasing number of tools becoming
available for developers to use, the opportunity to improve
productivity by increasing tool usage is enormous.

However, as the number of tools increases, so does
the difficulty for developers to gain awareness of relevant
tools. As Campbell and Miller argue, tools in major de-
velopment environments suffer from “deep discoverability”
problems [9]. The problem extends beyond software de-
velopment; in Grossman and colleagues’ survey of Auto-
CAD users, a “typical problem was that users were not
aware of a specific tool or operation which was available
for use” [20]. The problem is compounded at large compa-
nies like Microsoft [39], where developers create in-house
tools and wish to share them with peers.

To increase awareness and adoption of software tools
and practices, Google uses a technique called “Testing
on the Toilet”, or TotT for short (Figure 1). The TotT
episodes are 1-page printed newsletters, written by de-
velopers and posted in restrooms [6]. While originally
aimed at promoting testing tools and practices – hence the

*Research performed while at Google.

��������	
�

TTesting on the Toi let Presents . . . Healthy Code on the Commode ��
������	���

������������
����������
����������������
����������
����
��������	�
����
����������

���������	��
�����	��	
���������

��������������������
����
��
���	
���������	�����
	
�����������
�����������	
��

��������������
�������������
���
�����
�
����������
����

����
�
��
�	����

������������������
����
��������������
�
�����
�������
�
	���	
�����	������
�	�
����
�����������
��
�����

�����	����������	��������	����
�	���
�����������	�������
�����	
�������	
�����	����
��������
������������
���	�������������������������
�������������	����

����
���������
���
����
���
�����
����	���������������	�������
�����������
������������	�����
�
����	����
	�����������������

 ��
������������
�������������
������

�!�����������������	�
����
�"

���������	
���

����������	��
��
������������

���������������������������������	�
������	��
��
��������

��������������������� �! !�����"�#�����������������

 #$%!�&#'(()����	�
��
*����
��+�)(()����������,��
����-��
�)�

�������
����������	
���
����	������	

��������������	��
��
������������

�����������������	�
������	��
��
��������

��������������������� �! !�����"�#���������������������������������������+�

���+�

���������

 #$%!�&#'�((�)����	�
��
*����
��+�)�

����������((�)����������,��
����-��
�)��

 �
��
	�
����
�
����

����

���������

�������������	����
�
���������
��
�
����
�����������
���
���
���#���	�����������	����������

����	��������$���
��������%��&�����
����������������
	�	�
�
	����������
	
��� 	� ���	�
�����"

����������
��������������������
������������
������
����
��

'
��

	�	�
�������	
�������
	��������
���
��
��������
����������

��������
������
�
��
�����
���������
	����
�����
�����
���������
����"

� �
�����	������
�
(�����
�
��
������
�	
��������������������������������������
�)�������	���������������������
�����

����������������*'���	
��
�
��

)����	���	���������

����������������
�	��	�����+����������������	
��	
������	
�����	
���

��������
���������

������������'�������
���
�������
�������������	
����������������	
�����������
��	
����������	
��
�	����	�
�����������	����������
���$���
�������������

��������
���
��������	�
������
����������
���������	������	�
�

�������
����������

������
���
�
����������������
����������
���
�
�������
���������
�
�

��������
�
��

�
�����
��������������	�	���� ��������� �
 �����
����������������

Fig. 1: TotT episode promoting clang-format.

name – over the years TotT has become more inclusive of
other kinds of software development practices and tools.
Throughout the period of our study, episodes were dis-
tributed by volunteers; more recently, facilities staff have
taken up distribution. Episodes are posted in restrooms
for about a week, until the next episode is posted.

Software developers have posted episodes at Google
since May 2006, and other organizations have invested in
similar efforts. One such example is the Schibsted Group’s
Testing on the Toilet, which uses a format very similar
to our own [5]. Similarly, both Johns Hopkins Univer-

465

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00059

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 16,2023 at 04:11:14 UTC from IEEE Xplore. Restrictions apply.

Difference in differences (ICSE 2022) CausalImpact (ICSE 2019)

Yes! Tweets cause stars and new contributors.

84

+7%

(+1.2 stars every tweet burst)

+2%

(+1 new contributor every

250 tweet bursts)

Fine print: Models estimated across 2,370 GitHub projects mentioned in 44,544 tweets.

How to actually measure these effects?

Challenge: (Usually) More than one tweet. What should count?

86

Timeline of tweets and retweets within a burst mentioning the repo

Number of new
GitHub stars per day

Many heuristics to group tweets into “bursts.” Manual validation + sensitivity analysis.

Challenge: (Usually) More than one tweet. What should count?

87

Tweets mentioning the same project within X days of
each other are considered part of the same burst.

time
One burst

Less than X days

time
Two separate bursts

More than X days

time

Valid “treatment”
burst for repo A

Y days

time

Invalid “treatment”
burst for repo A

Another burst for repo A

Y

time

“Treatment” burst for repo A
Y days

Burst for repo B:

invalid control for A

Y

Burst for repo C:

valid control for A

Y
time

One burst

Less than X days

time
Two separate bursts

More than X days

time

Valid “treatment”
burst for repo A

Y days

time

Invalid “treatment”
burst for repo A

Another burst for repo A

Y

time

“Treatment” burst for repo A
Y days

Burst for repo B:

invalid control for A

Y

Burst for repo C:

valid control for A

Y

Two bursts mentioning the same project must be at
least Y days apart.

time
One burst

Less than X days

time
Two separate bursts

More than X days

time

Valid “treatment”
burst for repo A

Y days

time

Invalid “treatment”
burst for repo A

Another burst for repo A

Y

time

“Treatment” burst for repo A
Y days

Burst for repo B:

invalid control for A

Y

Burst for repo C:

valid control for A

Y

Control group repositories must not have
experienced any bursts of their own at least
Y days after the end of the corresponding
treatment group repository burst.

Challenge: Merging identities

88

You might like

Satnam Singh
@satnam65)2

Tse-Hsun (Peter) Chen
@petertsehsun

WarTranslated (Dmitri)
@wartrans1ated

Show more

What’s happening

Bulls at Pelicans
NBA · Starts at 7:00 PM

NATO
115K posts

Politics · Trending

31,000 Ukrainian
5,057 posts

Politics · Trending

Pache
Trending in United States

Nikita Kucherov
Sports · Trending

Show more

Terms of Service Privacy Policy

Accessibility Ads info More

Search

Edit profile

Bogdan Vasilescu
@b_vasi1escu

I shorten academic research papers to fit in 10 pages for a living, at CMU.

pronoun.is/he/him #BlackLivesMatter

Pittsburgh, PA bvasiles.github.io Joined November 2011

1,152 Following 1,749 Followers

Posts Replies Highlights Media Likes

Pinned

Bogdan Vasilescu ·@b_vasi1escu Sep 22, 2020

Making this video with for the

#StateoftheSource summit 2020 was a lot of fun! Live juggling, transparent

video overlay, our students' research on open source sustainability, the

whole package! Video: youtu.be/y4cpIaN3tFc Slides:

cmustrudel.github.io/slides/state-o…

@p0nk ^OpenSourceOrg

ALT

3 8 41

You reposted

Juniper Lovato ·@juniper1ov Dec 8, 2023

I am very excited to be recruiting a Ph.D. student in Complex Systems and

Data Science for Fall 2024 to work with me at UVM. I am looking for

students interested in data ethics and computational social science.

Please help spread the word! uvm.edu/socks/node/67?…

1,065 posts

Bogdan Vasilescu

Home

Explore

Notifications

Messages

Grok

Lists

Bookmarks

Communities

Premium

Profile

More

Bogdan Vasilescu
@b_vasi1escu

 83 followers · 5 following

Carnegie Mellon University - S3D

Pittsburgh, PA

http://bvasiles.github.io

@b_vasilescu

Achievements

Bogdan Vasilescu
bvasiles

Follow

Popular repositories

Public

Homepage for 17-803 "Empirical
Methods" at Carnegie Mellon University

 HTML 112 24

Public

JS reverse minifier based on statistical
machine translation

 JavaScript 17 2

Public

A data set for social diversity studies of
GitHub teams

 13 4

Public

 Python 11 9

Public

My website

 HTML 3 1

Public

Forked from JDonner/SuffixTree

Continuation of Danny Yoo's SuffixTree
and SubstringDict

 C 1

empirical-methods jsNaughty

diversity ght_unmasking_aliases

bvasiles.github.io SuffixTree

66 contributions in the last year

Overview Repositories 28 Projects Packages Stars

Many heuristics, manually validated, to cross-link users between the two platforms.

Challenge: Parallel trends assumption

89

0.2

0.4

0.6

−100 0 100
Relative Hour

Av
er

ag
e

st
ar

control
treatment

Propensity score matching to ensure the control repositories, on average, have the same pre-
treatment trend in outcome variables as the treatment group.

Challenge: Confounding events more likely to impact treatment group

90

All !lters ToolsPerspectives Images Videos Shopping News Books Maps Flights Finance

About 8 results (0.23 seconds)

It looks like there aren't many great matches for your
search
Try using words that might appear on the page you’re looking for. For example, "cake
recipes" instead of "how to make a cake."

Need help? Check out for searching on Google.

You can also try these searches:

What is the definition of an atom?

What is a simple definition of a atom?

What is an atom Class 9?

other tips

[deleted by user] : r/programming

Reddit · r/programming
1.4K+ comments

https://github.com/atom/xray. Personally, i don't care about Atom (i doubt MS will continue
developing it), but xray looked promising. It would be nice if ...

Wow, very cool. Lots of new players in this space

Hacker News
https://news.ycombinator.com › item

Jun 25, 2018 — ... github.com/atom/xray#web-compatibility . Seems like they want to be able
to use the same code to power both a desktop and web IDE, and would support ...

add documentation for zig fmt · Issue #1523 · ziglang/zig

GitHub
https://github.com › ziglang › zig › issues

Sep 13, 2018 — ... github.com/atom/xray/blob/master/docs/updates/2018_09_14.md. As long
as an application can send and receive operations and feed them into this library, it ...

You know what would really get me excited? A GPU acceler...

Hacker News
https://news.ycombinator.com › item

Jul 13, 2018 — ... github.com/atom/xray · hiccuphippo on July 13, 2018 | parent | prev [–].
VSCode has a problem when lines have many columns, you are unable to view the end, it ...

Newb Question: What's a Good Use-case for Rust?

Reddit · r/rust
30+ comments

code editor https://github.com/atom/xray. code editor https://github.com/Wilfred/remacs. code
editor - language server https://github.com/autozimu ...
12 answers · Top answer: EDIT : several people have pointed out(or suggested) gtk-rs is very …

Live collaborative editing in the Web IDE (MVC)

GitLab
https://gitlab.com › GitLab.org › GitLab FOSS › Issues

Sep 5, 2018 — Eon https://github.com/atom/xray/blob/master/docs/updates/2018_05_28.md ·
https://github.com/hackmdio/codimd · https://github.com/share/sharedb · http:// ...

"github.com/atom/xray" -twitter.com after:2018-01-01 before:2019-01-01

All !lters ToolsPerspectives Images Videos Shopping News Books Maps Flights Finance

About 8 results (0.23 seconds)

It looks like there aren't many great matches for your
search
Try using words that might appear on the page you’re looking for. For example, "cake
recipes" instead of "how to make a cake."

Need help? Check out for searching on Google.

You can also try these searches:

What is the definition of an atom?

What is a simple definition of a atom?

What is an atom Class 9?

other tips

[deleted by user] : r/programming

Reddit · r/programming
1.4K+ comments

https://github.com/atom/xray. Personally, i don't care about Atom (i doubt MS will continue
developing it), but xray looked promising. It would be nice if ...

Wow, very cool. Lots of new players in this space

Hacker News
https://news.ycombinator.com › item

Jun 25, 2018 — ... github.com/atom/xray#web-compatibility . Seems like they want to be able
to use the same code to power both a desktop and web IDE, and would support ...

add documentation for zig fmt · Issue #1523 · ziglang/zig

GitHub
https://github.com › ziglang › zig › issues

Sep 13, 2018 — ... github.com/atom/xray/blob/master/docs/updates/2018_09_14.md. As long
as an application can send and receive operations and feed them into this library, it ...

You know what would really get me excited? A GPU acceler...

Hacker News
https://news.ycombinator.com › item

Jul 13, 2018 — ... github.com/atom/xray · hiccuphippo on July 13, 2018 | parent | prev [–].
VSCode has a problem when lines have many columns, you are unable to view the end, it ...

Newb Question: What's a Good Use-case for Rust?

Reddit · r/rust
30+ comments

code editor https://github.com/atom/xray. code editor https://github.com/Wilfred/remacs. code
editor - language server https://github.com/autozimu ...
12 answers · Top answer: EDIT : several people have pointed out(or suggested) gtk-rs is very …

Live collaborative editing in the Web IDE (MVC)

GitLab
https://gitlab.com › GitLab.org › GitLab FOSS › Issues

Sep 5, 2018 — Eon https://github.com/atom/xray/blob/master/docs/updates/2018_05_28.md ·
https://github.com/hackmdio/codimd · https://github.com/share/sharedb · http:// ...

"github.com/atom/xray" -twitter.com after:2018-01-01 before:2019-01-01

tensorflow / tensorflow Public

Nov 14, 2023

 tensorflow-j

enkins

 v2.15.0

TensorFlow 2.15.0 Latest

Release 2.15.0

TensorFlow

Breaking Changes

tf.types.experimental.GenericFunction has been renamed to
tf.types.experimental.PolymorphicFunction .

Major Features and Improvements

oneDNN CPU performance optimizations Windows x64 & x86.

Windows x64 & x86 packages:

Code Issues 1.9k Pull requests 160 Actions Projects 2 Security 426 Insights

Tags Find a release

 6887368

Compare

Releases

Control for official releases, being featured on Trending, and overall Google chatter.

Trending
See what the GitHub community is most

excited about today.

 307 stars today

 1,070 stars today

 465 stars today

 199 stars today

 google / gemma.cpp
lightweight, standalone C++ inference engine for Google's Gemma
models.

 C++ 3,273 245 Built by

 WongKinYiu / yolov9
Implementation of paper - YOLOv9: Learning What You Want to Learn
Using Programmable Gradient Information

 Python 2,618 298 Built by

 ollama / ollama
Get up and running with Llama 2, Mistral, Gemma, and other large
language models.

 Go 40,525 2,530 Built by

 SoraWebui / SoraWebui
SoraWebui is an open-source Sora web client, enabling users to easily
create videos from text with OpenAI's Sora model.

 TypeScript 1,114 285 Built by

Developers
Spoken Language: Any Language: Any Date range: Today

 Star

 Star

 Star

 Star

Repositories

Explore Topics Trending Collections Events GitHub Sponsors

Yes! Tweets cause GitHub stars and new contributors

91

That’s all we need, unless you’d like to set customization options.
By embedding Twitter content in your website or app, you are agreeing to the Developer Agreement and Developer Policy.

Max Woolf
@minimaxir · Follow

I just released my new Python package: simpleaichat, an
open-source tool for working with ChatGPT/GPT-4 with
minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain
and aim to make it the easiest way to make AI apps.

github.com
GitHub - minimaxir/simpleaichat: Python package for easily interfacin…
Python package for easily interfacing with chat apps, with robust
features and minimal code complexity. - GitHub - …
minimaxir/simpleaichat: Python package for easily interfacing with chat

5:24 PM · Jun 8, 2023

737 Reply Share

Read 18 replies

<blockquote class="twitter-tweet"><p lang="en" dir="ltr">I just released my new Python package: simpleaichat, an open-source tool for working with ChatGPT/GPT-4 with minimal code yet max flexibility!

I built simpleaichat out of sheer frustration with LangChain and aim to make it the easiest way to make AI apps. https://t.co/ehDD5Nx0qv</p>— Max Woolf (@minimaxir) June 8, 2023</blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>Copy Code

minimaxir / simpleaichat Public

1 Branch 6 Tags Go to file Go to file Code

Remove option param… 569dbf5 · last month 136 Commits

.github GitHub sponsorship 8 months ago

docs README images 8 months ago

examples redesign coding notebook f… 8 months ago

simpleaichat Remove option parameter f… last month

.gitignore working packahe 9 months ago

LICENSE year bump 2 months ago

PROMPTS.md last minute README tweaks 8 months ago

README.md fix typo in README.md 7 months ago

setup.py bump version to 0.2.2 7 months ago

About

Python package for easily interfacing
with chat apps, with robust features and
minimal code complexity.

ai # chatgpt

 Readme

 MIT license

 Activity

 3.3k stars

 34 watching

 215 forks

Report repository

Releases 6

v0.2.2: Misc fixes/improveme… Latest

on Jul 23, 2023

+ 5 releases

Sponsor this project

minimaxir Max Woolf

patreon.com/minimaxir

simpleaichat

Code Issues 47 Pull requests 5 Actions Projects Security Insights

 main

minimaxir

from simpleaichat import AIChat

README MIT license

~300

June 8,
2023

Feb 25,
2024

June 9,
2023

3.3k

Estimating causal effects of
promotional activities

Dealing with abandoned
upstream dependencies

Estimating a project’s
effective labor pool

Estimating causal effects of
promotional activities

Dealing with abandoned
upstream dependencies

Attracting new
contributors

Responsible

sunsetting

Estimating a project’s
effective labor pool

Estimating a project’s
effective labor pool

Estimating causal effects of
promotional activities

Dealing with abandoned
upstream dependencies

Attracting new
contributors

Funding
models

Toxic
culture

Corporate

involvement
Contributor

drop-out

Long-term
engagement

Responsible

sunsetting

SE tools &

practices

Forking
Demographic

diversity

Attracting new
contributors

Funding
models

Toxic
culture

Corporate

involvement
Contributor

drop-out

Long-term
engagement

Responsible

sunsetting

SE tools &

practices

Forking
Demographic

diversity

More open questions remaining than answers so far
• How to design effective interventions

lacking centralized control?

• How do variations across contexts

impact all of the above?

• How does it all work?

• How do the competing needs of different stakeholders

get satisfied?

• How does responsibility emerge?

• How healthy and sustainable is the ecosystem?

 … especially with the attention it has been getting

Acknowledgements

Marat Valiev

Jim HerbslebAnita Brown

Alex SerebrenikAlex Nolte

Shurui Zhou

Sophie Qiu

Courtney Miller Hongbo Fang

Laura DabbishAudris Mockus

Anita Sarma

Lily Li

Cassandra Overney

Naveen Raman

Asher Trockman

Hao He Christian Kästner Hemank Lamba Emerson
Murphy-Hill

sustainability research on …

• ICSE 2022 (Twitter)

• MSR 2020 (Twitter)

• CSCW 2019 (signals)

• ESEC/FSE 2015 (social

connections)

Attracting
contributors

• ESEC/FSE 2020
(diffusion of practices)

• CSCW 2019 (signals)

• ICSE 2018 (badges)

Transparency
and signaling

• CHASE 2023 (social
media)

• ICSE 2020 (forking)

• ESEC/FSE 2019 (forking)

• ESEC/FSE 2018

(abandonment factors)

Project practices

• ICSE 2020
(donations)

Funding models
• CHI 2023 (ClimateCoach)

• ICSE SEIS 2023 (census)

• ICSE 2019 (social capital)

• CHI 2015 (gender & tenure)

• CHASE 2015 (survey)

Diversity and inclusion

• ICSE 2022 (toxicity theory)

• ICSE SEIS 2022 (toxicity vs pushback)

• ICSE NIER 2020 (toxic language)

• ICSE 2019 (overwork)

• OSS 2019 (dropout, survival analysis)

Stress, burnout,
disengagement

Novelty and
innovation
• ICSE 2024 (atypical

combinations)

Network effects
• ICSE 2024 (innovation)

• ESEC/FSE 2023 (labor pools)

• ICSE 2022 (Twitter)

• ESEC/FSE 2020 (diffusion of

practices)

• ICSE 2019 (social capital)

• ESEC/FSE 2018

(abandonment factors)

• ESEC/FSE 2023

• ICSE 2025 (dealing

with abandonment)

Sunsetting

http://www.apple.com/
https://cmustrudel.github.io/papers/msr20tweets.pdf
https://cmustrudel.github.io/papers/cscw19signals.pdf
https://cmustrudel.github.io/papers/fse15onboarding.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/cscw19signals.pdf
https://cmustrudel.github.io/papers/icse18badges.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/zhou20forks.pdf
https://cmustrudel.github.io/papers/fse19forks.pdf
https://cmustrudel.github.io/papers/fse18sustainability.pdf
https://cmustrudel.github.io/papers/overney20donations.pdf
http://www.apple.com/
https://cmustrudel.github.io/papers/zhao_2023_seis.pdf
https://cmustrudel.github.io/papers/icse19social.pdf
https://cmustrudel.github.io/papers/chi15.pdf
https://cmustrudel.github.io/papers/chase15.pdf
https://cmustrudel.github.io/papers/osstoxicity22.pdf
https://cmustrudel.github.io/papers/seis22pushback.pdf
https://cmustrudel.github.io/papers/raman20toxicity.pdf
https://cmustrudel.github.io/papers/icse19stress.pdf
https://cmustrudel.github.io/papers/miller19dropout.pdf
https://cmustrudel.github.io/papers/fang2024innovation.pdf
https://cmustrudel.github.io/papers/fang2024innovation.pdf
https://cmustrudel.github.io/papers/fang2023laborpool.pdf
http://www.apple.com/
http://www.apple.com/
https://cmustrudel.github.io/papers/icse19social.pdf
https://cmustrudel.github.io/papers/fse18sustainability.pdf
https://cmustrudel.github.io/papers/miller2023winging.pdf

