
Pursuing Meaningful
Software Engineering
Research

Gail C. Murphy
University of British Columbia

Disclaimer

Request
Participate! Ask questions,  

provide your ideas!

One person’s views 
Not exhaustive

I 
Definitions

II 
Identifying Problems

IV 
Impact

V 
Summary

III 
Study and/or “Solve”

I 
Definitions

I - Definitions

Pursuing Meaningful  

Software Engineering  

Research

Software Engineering

I - Definitions

Multi-person multi-version  
software 
 - B. Randell

I - Definitions People

Process Artifacts

Software
Engineering

I - Definitions

Meaningful to Me

Meaningful to  
Others

I - Definitions

Meaningful to Me

Meaningful to  
Others

I - Definitions

I - Definitions

Meaningful to  
no-one

I - Definitions

Meaningful to  
others

Meaningful  
to me

I - Definitions

Meaningful to 
others and me

This occurs when you are
passionate about the
questions you are pursuing
and the ways that you are
providing insights to those
questions impacts academic
and/or industry communities.

Software Engineering

I - Definitions

Meaningful

II 
Identifying 
Problems

Ways to Identify 
Problems

II - Identifying Problems

01 Overly hard?

02

03

Unrealistic assumptions?

Relax constraints?

01 Overly Hard

II - Identifying Problems

1990s: developer tools often relied
on call graphs parsed from source
code. These tools were brittle and 
often didn’t work across systems.

Lightweight source model extraction 
aimed to ease extraction of  
information like call graphs by 
bypassing parsing. Lightweight Source Model Extraction 

Murphy and Notkin, FSE ‘95

People

Process Artifact

02 Unrealistic 
 Assumptions

II - Identifying Problems

Software Reflexion Models 
Murphy, Notkin and Sullivan, FSE ‘95

Architecture

Design

Implement

1990s assumption:

People

Process Artifact

03 Relax Constraints

II - Identifying Problems

Refactoring tools take an an all or 
nothing approach, making potential
large-scale code changes invisibly
to the developer.

Make refactoring operations like 
a debugger so the developer 
can see the changes being made
and be “in control” Stepwise Refactoring Tools 

Eilertsen and Murphy, ICSME ‘21

People

Process Artifact

Ways to Identify 
Problems

01 Overly hard?

02

03

Unrealistic assumptions?

Relax constraints?

Other ways?

II - Identifying Problems

Let’s Try Identifying Some Potential Problems
II - Identifying Problems

I’ll assign groups of 4 to one of two scenarios about a company building software.

Think (1 min) about the software engineering problems there might be in  
the scenario. You’ll have to stretch and imagine what might be going wrong 
for the companies in the scenarios. 
 
Pair with one person in your group of 4 and share the problems (2 min) you think might be
a cause of the company’s problems. 
 
Talk about the problems in your group of 4 (4 min).

We’ll share some of the potential problems identified with the group. 
 

1-2-4-All

Let’s Try Identifying Some Potential Problems
II - Identifying Problems

1-2-4-All

Ways to Identify 
Problems

01 Overly hard?

02

03

Unrealistic assumptions?

Relax constraints?

People

Process Artifact

Company A builds popular
mobile phone apps. It uses a
continuous delivery to push
updates and new features fast
to its customers. Those fast
deliveries provide substantial
value to the customer, but also
risk as security vulnerabilities
related to the frameworks and
libraries used in the software too
often leak to customers.

Let’s Try Identifying Some Potential Problems

Company B builds software
for the competitive financial
services industry. It has great
teams of developers who
work together well, but it is
unable to deliver software a
fast as its competitors.

Scenario A Scenario B

II - Identifying Problems

Meaningful?
II - Identifying Problems

Impact more than one company?

Impact more than one kind of software domain?

Apply across languages? Teams? Processes?

Who/what/where does the problem apply/occur?

II - Identifying Problems

Ways to Identify 
Problems

01 Overly hard?

02

03

Unrealistic  
assumptions?

Relax  
constraints?

People

Process Artifact

Meaningfulness 
 
Who/what/where 
does this 
problem  
apply/occur?

III 
Study and/or “Solve”

tudy

III - Study and “Solve”

characterize the
phenomenas

olve
demonstrate a
new idea that
addresses one
or more
phenomenon

People

Process Artifacts

Software
Engineering

III - Study and “Solve”

Study  
Some methods: 
 
Controlled experiments 
Case studies 
Survey research 
Ethnographies 
Action research 
Code / System analyses

Picking a study method

III - Study and “Solve”

Wait, what do you know about the phenomenon to be studied?

Picking a research question

III - Study and “Solve”

See “Selecting Empirical Methods for Software Engineering Research”, Easterbrook et al.

Do you first need to explore the phenomenon asking questions  
like “Does X exist?” or “What is X like?” or “How is X different than Y?”

Do you know enough about the phenomenon to ask about normal  
patterns of occurrence like “How often does X occur?” or  
“How does X normally occur?”

Picking a research question

III - Study and “Solve”

See “Selecting Empirical Methods for Software Engineering Research”, Easterbrook et al.

Do you want to know more about the relationship between two 
phenomenon as in “is there a correlation between X and Y?”

Do you want to explore cause and effect as in “does X cause Y?” rr 
“is X better at preventing Y than Z?”

Problem Question Method

tudy

III - Study and “Solve”

Problem Question Method

tudy

III - Study and “Solve”

Other factors to consider: 
 
- how do you think about scientific truth? 
 (e.g., positivist, constructionist? Etc.?)
- how might theory fit in?

Problem Question Method

tudy

III - Study and “Solve”

Other factors to consider: 
 
- how do you think about scientific truth? 
 (e.g., positivist, constructionist? Etc.?)
- how might theory fit in?

 Not linear!

Problem Question Method

tudy

III - Study and “Solve”

Other factors to consider: 
 
- how do you think about scientific truth? 
 (e.g., positivist, constructionist? Etc.?)
- how might theory fit in?

 Not linear!

It is often hard work to figure out what you
are studying exactly and how to go about
studying it!

Problem Question Method

III - Study and “Solve”

ExplorePeople Case Study

Artifacts Patterns of Occurrence Code Analyses

Process Relationship Case Study

Process Cause and Effect Controlled  
Experiment

One of the aspects that makes software engineering research challenging and fun 
is how much thought you’ll need to put into the phenomenon you are studying  

and how you study it

Some abstract examples

tudy

III - Study and “Solve”

characterize the
phenomenas

olve
demonstrate a
new idea that
addresses one
or more
phenomenon

“Solve”

III - Study and “Solve”

 
Sometimes we understand a problem well and we have 
new ideas for how to “solve” the problem 
 
We introduce a new tool, method, process, etc.  
 
We then need to show that it “solves” the problem

Problem Question Method

olve

III - Study and “Solve”  
Some methods: 
 
Controlled experiments 
Case studies 
Survey research 
Ethnographies 
Action research 
Code / System analyses

More likely to use…

Relationship

Cause and Effect
More likely to  
be about… Note, I am making some 

gross generalizations!

Let’s Try Studying or “Solv”ing…

Find someone near you to pair with

Pick one of the problems I put up on the next screen as a pair 
 
Think to yourself for how you might study or solve the problem (2 min) 
 
In pairs, take 2 min each to share your approach and the other person will interview you 
about the benefits for 1 min. Then switch. (6 min total) 

I might ask for some volunteers to share some observations you have about your  
discussions (depending on how we are doing on time)

Appreciative Interview (Modified)

III - Study and “Solve”

Let’s Try Studying or “Solv”ing…

Problem #1 
 
A developer at Company A is unaware of whether there are outstanding or new  
vulnerabilities in libraries on which the code they write relies. 

Problem #2 
 
A developer at Company B integrates new features once per month into a release that 
is manually tested.

Appreciative Interview (Modified)

III - Study and “Solve”

III - Study and “Solve”

Meaningful to  
others

Meaningful 
to myself and others

Meaningful  
to me

What might you “tweak” or “alter” to
move between quadrants?

III - Study and “Solve”

tudy olve

Question Methods

Explore

Patterns of Occurrence

Relationship

Cause and Effect

 
 
 
Controlled experiments 
Case studies 
Survey research 
Ethnographies 
Action research 
Code / System analyses

IV 
Impact

IV - Impact

Impact through publishing

Meaningful to  
others

Meaningful to  
others and me

Meaningful  
to me

IV - Impact

The publication venue(s) you choose  
can impact “meanginfulness” 
 
Each venue has a different (but 
not distinct) community

III - Study and “Solve”

How else might you have impact with your research 
and

how might you achieve that impact?

Not every piece of research you will do will have broad impact academically or impact industrial practice, but 
it can be helpful to reflect about if you want broader impact and if so how to achieve it

Let’s brainstorm some ways to have impact

I’ll assign groups of 4 to brainstorm how we might have impact with software engineering  
research.

Think (1 min) about how you might go about increasing impact of a result. 
 
Pair with one person in your group of 4 and share the ways to increase impact (2 min). 
 
Talk about the ways to have impact in your group of 4 (4 min).

We’ll share some of the potential ways to have impact across everyone. 
 

1-2-4-All

IV - Impact

Let’s brainstorm some ways to have impact

Solution #1 
 
You have developed a new tool that checks source code when it is committed against a  
database of known vulnerabilities and alerts the developer if there is a new version 
available for software depended on with a vulnerability. The tool works for Java code.

Solution #2 
 
You have defined a new process that enables a company to analyze their toolchain 
and identify improvements to speed the delivery of new features. The process is 
presented as a series of questions that help an organization identify and fill toolchain gaps.  
The process works across a wide variety of software organizations.

1-2-4-All

IV - Impact

Blogs

Social Media

Workshops

Tutorials

Start a
company

License your
Technology

Mainstream 
media stories

Talks

IV - Impact Some possible ways…

A company example… 
 
Tasktop Technologies
 2004 - Tech development
~2005 - Started planning company 
 2007 - Mik Kersten finishes Ph.D. 
 Incorporate company 
 2014 - $11m Series A funding
 2017 - $11m Series B funding 
 2019 - $7.25m Series C funding 
 2021 - $100m Private Equity
 2022 - Acquired by Planview

  

Mik Kersten

Rob Elves

3 co-founders

IV - Impact

A company example: Tasktop Technologies 
Some lessons learned
Research problems aren’t the same as industry problems
 
Selling a new idea means showing ROI and creating a category 
 
Customer success is critical (it isn’t obvious how to use software well)

It takes a multi-talented team of more than developers to be successful

Patience is key

Continual problem solving is fun!

IV - Impact

Need to reflect on
different

perspectives on
your work to have

broad impact

V 
Summary

Software
Engineering
Research  
is not abstract

V - Summary

It is very concrete 
as its about  
multiple people
building complex 
systems better

V - Summary

V - Summary

Software 
Engineering

People

Process Artifacts

II 
Identifying Problems

IV 
Impact

III 
Study and/or “Solve”

V - Summary

Software 
Engineering

People

Process Artifacts

II 
Identifying Problems

IV 
Impact

III 
Study and/or “Solve”

Meaningful to  
others

Meaningful 
to myself and others

Meaningful  
to me

You can’t tackle
everything at once:
Some tips

V - Summary

Approach your work rigorously 

Try to hit different notes over your  
career 

Each day is ~ 100 blocks of 10 min,  
use one block to reflect*  
 
Its about continuous improvement

* Tim Urban:  
https://waitbutwhy.com/2016/10/100-blocks-day.html

V - Summary

Software 
Engineering

People

Process Artifacts

II 
Identifying Problems

IV 
Impact

III 
Study and/or“Solve”

Meaningful to  
others

Meaningful 
to myself and others

Meaningful  
to me

