Biometrics in Software Engineering

O

the what, the why, and the how

Venera ArnaOUdova, Ph.D. | Pronouns: she/her/hers

Associate Professor
School of Electrical Engineering and Computer Science
Washington State University (WSU)

it/ s seneraammaoudous cony/ WASHINGTON STATE
UNIVERSITY

https://nam12.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.veneraarnaoudova.com%2F&data=05%7C01%7Cvenera.arnaoudova%40wsu.edu%7C4ab5df6353e646c3696e08dbb099b83e%7Cb52be471f7f147b4a8790c799bb53db5%7C0%7C0%7C638297946489010212%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=f7YHUcHPykPQ1L%2BZ58a97YQ%2B8QxOHFsVDj14qqDKqVc%3D&reserved=0

The Software Engineering Lab and collaborators @ WSU

Sarah Fakhoury Ziyi Zhang Devjeet Roy

Venera Arnaoudova

Yuzhan Ma Olusola Adesope

Biometrics

Measurement and analysis of
physiological states

Examples

heart rate, brain activity (fNIRS,
EEG, fMRI), eye movements
(eyetracking), galvanic skin
response (EDA)

Widely used across multiple
domains

E.g., medicine, psychology,
education etc.

Why biometrics for SE?

Biometrics give us insight into
psychological and emotional states
a person experiences during SE
tasks
e Without biometrics, we must
rely on self-reported measures
which can be subject to bias

They can also be used as an
interface to control systems (e.g.,
BCl)

Biometrics are quickly gaining adoption in SE research

Development of newer N o2
technologies has lead to: ? 28140 ° s
e lowered the barrier to [1540] (2140} (o) erss 134/40] _ [40/40]

e ntry .lcsn .ESEC 934 ISSRE ‘ESEC P39 EMIS

e more precise © 0 - . ‘ -
measurements 2509 [3/401 250’? 2-59 [7/40] z.so? 2.50% Cm @ : ICSE ‘
O

[1/40] -

X

Most commonly used o .m Qusn chom Qz:fn Qm.m (1) rocm (e o ()20 ()

2002 2006 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

b I O m et rl CS : Legend O Conference Paper I\/ | Workshop Paper D Journal Paper Q Book f—:{ Symposium Year
o Eyetracking

e Brain Imaging - EEG, fMRI,
fNIRS

Menzen, Juliano Paulo, Kleinner Farias, and Vinicius Bischoff. "Using biometric data in software engineering: a systematic mapping
study." Behaviour & Information Technology 40.9 (2021): 880-902.

Outline

1. Biometrics in SE
a. Eyetracking
b. Brain Imaging
i. fMRI
ii. fNIRS
iii. EEG
2. A novel framework to combine brain imaging with eyetracking
a. Overview

b. Tooling to facilitate multimodal biometric research in SE

3. Hands on!

Eyetracking

Extensively used to study complex
information processing tasks (such as SE)

Low cost, and easy to deploy
Eye movements give us insights into a

participant’s cognitive and psychological
(including emotional) state

Next 10-15 years: technologies that allow
the usage of commodity hardware (e.g.
smartphones, webcams) to capture eye
movements

Eyetracking: Basics —

Types of eye movements:

e Fixations: Extended focus on a specific point of interest. This is where
visual information processing occurs.

® Saccades: Rapid movement of the eyes from one point of interest to
another. No processing is happening here.

Eyetrackers typically record the raw location at which the eyes are directed at
some polling rate, known as gazes.

Raw gazes need to be processed into fixations and saccades using existing
algorithms.

Measures in Eyetracking

Wide variety of metrics that
indicate different cognitive
states

Examples:

fixation duration, fixation
count, pupil diameter

Eye-tracking Metrics in Software Engineering

Zohreh Sharafi

Timothy Shaffer, Bonita Sharif

Yann-Gaél Guéhéneuc

Génie Informatique et Génie Logiciel Computer Science & Information Systems Génie Informatique et Génie Logiciel

Ecole Polytechnique de Montréal

zohreh.sharafi @ polymtl.ca

Abstract—Eye-tracking studies are getting more prevalent in
software engineering. Researchers often use different metrics
when publishing their results in eye-tracking studies. Even when
the same metrics are used, they are given different names, causing
difficulties in comparing studies. To encourage replications and
facilitate advancing the state of the art, it is important that the
metrics used by researchers be clearly and consistently defined
in the literature. There is therefore a need for a survey of eye-
tracking metrics to support the (future) goal of standardizing eye-
tracking metrics. This paper seeks to bring awareness to the use of
different metrics along with practical suggestions on using them.
It compares and contrasts various eye-tracking metrics used in
software engineering. It also provides definitions for common
metrics and discusses some metrics that the software engineering
community might borrow from other fields.

I. INTRODUCTION

Researchers in software engineering (SE) use eye-tracking
technology to study the cognitive processes and efforts in-
volved in different types of SE tasks. An eye tracker (hardware
and software) monitors an participant’s visual attention via
eye-movement data [1], [2]. Eye movements are essential to
cognitive processes because they focus the participant’s visual
attention to the parts of a visual stimulus that are processed
by the brain. Visual attention triggers cognitive processes that
are required to perform tasks [3]. It is also a proxy for visual
effort—a subset of cognitive effort—measured as the amount

of visnal attention_allocated to narts of a_visnal stimulus _The

Youngstown State University
Montréal, Canada Ohio, USA
trshaffer @student.ysu.edu, bsharif @ysu.edu yann-gael.gueheneuc @polymtl.ca

Ecole Polytechnique de Montréal
Montréal, Canada

of fixations for the whole stimulus is called “Fixation Rate”
[5], ON-target ALL-target [6], Ratio of ON-target:All-target
Fixation (ROAF) [7], Ratio of fixation count [8], Relevant
fixation count [9], and “Time in Region (TIR)” [10].

Consequently, we study exhaustively (to the best of our
knowledge) all the ways in which an participant’s visual effort
has been measured in SE eye-tracking studies and provide
unique names and definitions for the used metrics. We also
discuss the interpretations of the values of these metrics with
references to the literature. We provide practical suggestions on
using these metrics and, finally, introduce a list of metrics that
SE researchers could borrow from usability studies. Therefore,
the contributions of this paper are:

1) Side-by-side comparisons and contrast of existing
metrics for visual effort in SE eye-tracking studies.

2) A proposal of new metrics to borrow from other
domains, with example applications.

3) A discussion on how to standardize metrics to help
compare and replicate eye-tracking studies.

We provide necessary background information on eye
tracking in Section II. Section III summarizes previous eye-
tracking studies in SE. Section IV presents a list of visual-
effort metrics followed by a discussion in Section V. Threats
to the validity are reported in Section VI-A and VI-B. Section
VII concludes and sketches future studies.

Sharafi, Zohreh, et al. "Eye-tracking metrics in software engineering." 2015 Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2015.

10

Measures in Eyetracking —

Global metrics

Concerned with areas of interest (AOI) and associated eye movements

Examples:

e Fixation duration/count - how many times did the participant view a
particular area of interest (identifiers)

® Regression Rates - how often did the participant come back to a part of
the stimulus they’ve already seen

Measures in Eyetracking —

Scanpath metrics

Concerned with the sequence of eye movements

Examples:

® Transition matrix - how often did the participant move between
different areas of interest.
e Reading Order - how close are the participant’s eye movements to a

particular model for reading order (e.g. story/linear order vs execution
order)

iTrace: Eyetracking for SE

A set of tools for supporting
eyetracking experiments in SE

Allows mapping of eye gazes to
fine-grained source code
elements, and common gaze
processing algorithms

Support for Eclipse, Visual Studio,
Atom, and other IDEs/editors

Shaffer, Timothy R., et al. "itrace: Enabling eye tracking on software artifacts within the ide to support software engineering tasks." Proceedings

iTrace: Enabling Eye Tracking on Software Artifacts within
the IDE to Support Software Engineering Tasks

Timothy R. Shafferf, Jenna L. Wisef, Braden M. Walters',
Sebastian C. Mdller*, Michael Falconet, Bonita Sharift

*Youngstown State University, USA
Department of CS and IS

{trshaffer,jlwise,omwalters01}@student.ysu.edu

“University of Zurich, Switzerland
Department of Informatics
smueller@ifi.uzh.ch

mrfalcone@student.ysu.edu,bsharif@ysu.edu

ABSTRACT

The paper presents iTrace, an Eclipse plugin that implic-
itly records developers’ eye movements while they work on
change tasks. iTrace is the first eye tracking environment
that makes it possible for researchers to conduct eye track-
ing studies on large software systems. An overview of the
design and architecture is presented along with features and
usage scenarios. iTrace is designed to support a variety of
eye trackers. The design is flexible enough to record eye
movements on various types of software artifacts (Java code,
text/html/xml documents, diagrams), as well as IDE user
interface elements. The plugin has been successfully used
for software traceability tasks and program comprehension
tasks. iTrace is also applicable to other tasks such as code
summarization and code recommendations based on devel-
oper eye movements. A short video demonstration is avail-
able at https://youtu.be/30UnLCX4dXo.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms

Experimentation, Measurement, Human Factors

of the 2015 10th Joint Meeting on Foundations of Software Engineering. 2015.

researcher to collect eye movements of software engineers
while they work on software tasks such as adding a new fea-
ture, fixing a bug, or on a general comprehension task. The
eye movement data is used to study the cognitive thought
processes [6] of developers as they perform a task using dif-
ferent software artifacts. Existing eye-tracking studies have
mainly studied developers comprehending software artifacts
such as source code, models such as UML diagrams, and
software visualizations.

An eye tracker consists of both hardware and software.
The hardware is a physical device that usually sits under
the monitor. The software provided by eye tracking vendors
is in the form of an experiment builder (e.g., Tobii Studio
from Tobii Inc.) that allows researchers to build the experi-
ment workflow using various stimuli such as a still image, a
website, a video recording, or free form desktop recording.

Most existing eye tracking studies (besides [11] and [4])
done in the SE community use small snippets of code shown
as an image to study participants. An ad hoc system to
support scrolling using slider bar events for a few small pro-
grams was done in [9] but the tool is unavailable. In all other
studies, the image needs to be displayed on the screen all at
once and participants are not allowed to scroll as scrolling
would interfere with data collected and make post process-
ing extremely difficult if not impossible. This is because the
eye tracker is not aware of the type of stimulus presented to
P A - » ;

B ‘ B . S .

13

Notable Publications

No difference between
underscore and camel case
in terms of performance.

Metrics Used
Fixation duration, fixation
count, AOI transitions

Sharif, Bonita, and Jonathan |. Maletic. "An eye tracking
study on camelcase and under_score identifier styles."
2010 IEEE 18th International Conference on Program
Comprehension. IEEE, 2010.

18th IEEE International Conference on Program Comprehension

An Eye Tracking Study on camelCase and
under_score Identifier Styles

Bonita Sharif and Jonathan I. Maletic
Department of Computer Science
Kent State University
Kent, Ohio 44242
bsimoes @cs.kent.edu and jmaletic @cs.kent.edu

Abstract— An empirical study to determine if identifier-
naming conventions (i.e.,, camelCase and under_score) affect
code comprehension is presented. An eye tracker is used to
capture quantitative data from human subjects during an
experiment. The intent of this study is to replicate a previous
study published at ICPC 2009 (Binkley et al.) that used a timed
response test method to acquire data. The use of eye-tracking
equipment gives additional insight and overcomes some
limitations of traditional data gathering techniques.
Similarities and differences between the two studies are
discussed. One main difference is that subjects were trained
mainly in the underscore style and were all programmers.
While results indicate no difference in accuracy between the
two styles, subjects recognize identifiers in the underscore style
more quickly.

Keywords-identifier styles; eye-tracking study; code
readability

I INTRODUCTION

The comprehension of identifier names in programs is at
the core of program understanding. Identifier names are

identifier. The position of the underscore on the keyboard
and the number and combination of keystrokes required
plays a role in typing speed. However, does the ease of
writing identifiers affect the accuracy of code readability and
maintainability?

To address this topic, Binkley at al. [4] conducted a study
with 135 subjects consisting of programmers and non-
programmers to determine which identifier style was faster
and more accurate. They hypothesized that identifier style
affects the speed and accuracy of software maintenance.
The subjects (who had programming experience) were
mostly trained in the camel-case style. The study used an
online game-like interface to gather timed responses from the
subjects. Their findings show that camel-cased identifiers
lead to higher accuracy among all subjects, and those trained
in the camel-case style, were able to recognize camel-cased
identifiers faster. However, with respect to all subjects,
camel-cased identifiers took 13.5% longer than underscored
identifiers (p-value<0.0001).

Here, we attempt to replicate Binkley et al.’s [4]
experiment using an eye tracker to gather eye gaze data
during_the experiment. In_our study, only programmers

14

Notable Publications

Proposes a new metric
linearity, which is shown to
have a strong effect on the

reading order

Metrics Used

Fixation duration, fixation
count, regression rates,

story/execution order

Peitek, Norman, Janet Siegmund, and Sven Apel.
"What drives the reading order of programmers?
an eye tracking study." Proceedings of the 28th

International Conference on Program
Comprehension. 2020.

2020 IEEE/ACM 28th International Conference on Program Comprehension (ICPC)

What Drives the Reading Order of Programmers?
An Eye Tracking Study

Norman Peitek

Magdeburg, Germany
ABSTRACT

Background: The way how programmers comprehend source code
depends on several factors, including the source code itself and the
programmer. Recent studies showed that novice programmers tend
to read source code more like natural language text, whereas experts
tend to follow the program execution flow. But, it is unknown
how the linearity of source code and the comprehension strategy
influence programmers’ linearity of reading order.

Objective: We replicate two previous studies with the aim of addi-
tionally providing empirical evidence on the influencing effects of
linearity of source code and programmers’ comprehension strategy
on linearity of reading order.

Methods: To understand the effects of linearity of source code on
reading order, we conducted a non-exact replication of studies by
Busjahn et al. and Peachock et al., which compared the reading
order of novice and expert programmers. Like the original studies,
we used an eye-tracker to record the eye movements of participants
(12 novice and 19 intermediate programmers).

Results: In line with Busjahn et al. (but different from Peachock
et al.), we found that experience modulates the reading behavior
of participants. However, the linearity of source code has an even
stronger effect on reading order than experience. whereas the com-

Janet Siegmund Sven Apel
Leibniz Institute for Neurobiology Chemnitz University of Technology
Chemnitz, Germany

Saarland University
Saarbriicken, Germany

ACM Reference Format:

Norman Peitek, Janet Siegmund, and Sven Apel. 2020. What Drives the
Reading Order of Programmers? An Eye Tracking Study. In 28th Inter-
national Conference on Program Comprehension (ICPC °20), October 56,
2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3387904.3389279

1 INTRODUCTION

In the past decades, much research has focused on how program-
mers comprehend source code, which is a central activity in soft-
ware development [26, 52]. The underlying cognitive process, pro-
gram comprehension, is a prerequisite for all subsequent program-
mer activities, such as testing, debugging, and maintenance. Past
research theorized on two main strategies of how programmers
comprehend software. Bottom-up comprehension is used when pro-
grammers lack domain knowledge, experience, or context to effi-
ciently understand source code [39]. Instead, they have to under-
stand individual source code lines and statements and integrate
their semantic meaning to eventually build an overarching un-
derstanding (i.e., chunking [46]). Top-down comprehension is used
when programmers take advantage of previous experience or do-
i ; s o ;

L D I o) 1

15

Brain Imaging

Brain Imaging
o Direct measurements on brain activity

o Higher accuracy and precision than eye-
tracking and other biometrics for cognitive

effort

o Allows us to localize brain activity to
different brain regions and study
interconnectivity between these regions

o Requires more expertise to operate (difficult
to use as blackbox tool)

17

Functional Magnetic Resonance
Imaging (fMRI)

 Activated brain regions need more
oxygen

* By measuring oxygenated and
deoxygenated blood we can
approximate mental effort

: inflow of 1
ac[tai\',gllri‘on T 0O, consumption I o;;b?gég?ed . " BOLD signal
HbO,
* Uses strong magnets to create ., - S
structural images of the human brain * e
local concentration ocal concentration

of deoxyhemoglobin of decxyhemogiobin

Notable Publications

Understanding Understanding Source Code with
Functional Magnetic Resonance Imaging

Janet Siegmund~, Christian Kastner<, Sven Apel~, Chris Parnin®, Anja Bethmann’,
Thomas Leich?, Gunter Saake”, and André Brechmann’

~University of Passau, Germany

“Carnegie Mellon University, USA

Georgia Institute of Technology, USA “Leibniz Inst. for Neurobiology Magdeburg, Germany
°Metop Research Institute, Magdeburg, Germany “University of Magdeburg, Germany

ABSTRACT

Program comprehension is an important cognitive process that in-
herently eludes direct measurement. Thus, researchers are strug-
gling with providing suitable programming languages, tools, or
coding conventions to support developers in their everyday work.
In this paper, we explore whether functional magnetic resonance
imaging (fMRI), which is well established in cognitive neuroscience,
is feasible to more directly measure program comprehension. In a
controlled experiment, we observed 17 participants inside an fMRI
scanner while they were comprehending short source-code snip-
pets, which we contrasted with locating syntax errors. We found a
clear, distinct activation pattern of five brain regions, which are re-
lated to working memory, attention, and language processing—all
processes that fit well to our understanding of program comprehen-
sion. Our results encourage us and, hopefully, other researchers to
use fMRI in future studies to measure program comprehension and,
in the long run, answer questions, such as: Can we predict whether
someone will be an excellent programmer? How effective are new
languages and tools for program understanding? How should we
train developers?

1. INTRODUCTION

As the world becomes increasingly dependent on the billions
lines of code written by software developers, little comfort can be
taken in the fact that we still have no fundamental understanding of

(e) Other fMRI studies (d) Cognitive proc.

~ 1

& ;

(f) Interpretation for o0
- o shensi “currvalue =)
program comprehension el N D)

Stz

Figure 1: Workflow of our fMRI study.

First study using fMRI in SE

- Reading source code activates
brain areas related to language
comprehension, problem
solving, working memory.

Siegmund, Janet, et al. "Understanding understanding
source code with functional magnetic resonance imaging."
Proceedings of the 36th international conference on
software engineering. 2014. 19

Notable Publications

o Replicates prior work and
supports the use of fMRI for
program comprehension
studies

e Comprehension based on
semantic cues elicits lower
levels of brain activation
compared to bottom-up
comprehension

Siegmund, Janet, et al. "Measuring neural efficiency of
program comprehension." Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering.
2017.

Measuring Neural Efficiency of Program Comprehension

Janet Siegmund
University of Passau
Passau, Germany

Sven Apel Johannes Hofmeister
University of Passau
Passau, Germany

University of Passau
Passau, Germany

Andrew Begel
Microsoft Research
Redmond, Washington, USA

ABSTRACT

Most modern software programs cannot be understood in their
entirety by a single programmer. Instead, programmers must rely
on a set of cognitive processes that aid in seeking, filtering, and
shaping relevant information for a given programming task. Sev-
eral theories have been proposed to explain these processes, such
as “beacons,” for locating relevant code, and “plans,” for encoding
cognitive models. However, these theories are decades old and lack
validation with modern cognitive-neuroscience methods. In this
paper, we report on a study using functional magnetic resonance
imaging (fMRI) with 11 participants who performed program com-
prehension tasks. We manipulated experimental conditions related
to beacons and layout to isolate specific cognitive processes related
to bottom-up comprehension and I based on seman-
tic cues. We found evidence of semantic chunking during bottom-up
comprehension and lower activation of brain areas during com-
prehension based on semantic cues, confirming that beacons ease
comprehension.

CCS CONCEPTS

« Human-centered computing — HCI design and evaluation
methods; Empirical studies in HCI;

Anja Bethmann
Leibniz Institute for Neurobiology Leibniz Institute for Neurobiology
Magdeburg, Germany

Norman Peitek Chris Parnin
Leibniz Institute for Neurobiology
Magdeburg, Germany

NC State University
Raleigh, North Carolina, USA

Christian Késtner
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

André Brechmann

Magdeburg, Germany

Conference and the ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, Paderborn, Germany, September 4-8, 2017 (ESEC/FSE’17),
11 pages.

https://doi.org/10.1145/3106237.3106268

1 INTRODUCTION

During program comprehension, the eyes of programmers glide
across a computer screen. In just seconds, they can extract a deep
understanding from abstract symbols and text arranged in a source-
code file. Expert programmers are especially adept at program
comprehension of familiar code—their eyes dance around, finding
points of interest, called beacons (or semantic cues) that provide
hints about a program’s purpose, such as method signatures, and
common programming idioms. Top-down comprehension has been
used as an umbrella term to describe cognitive processes related to
experience and expectation that guide the understanding of source
code [7]. Researchers have also theorized that programmers must
use preformed knowledge structures, called plans, that represent
semantic and syntactical patterns of software [8]. For example,
an identifier bubbleSort indicates the presence of a sorting al-
gorithm and primes a programmer to expect other elements of
the bubble-sort algorithm, such as code related to a swap of array
elements.

In cantrast_when code lacks familiar semantic cues _nrogram-

21

Functional Near-Infrared
Spectroscopy (fNIRS)

* fNIRS measures same hemodynamic
response as fMRI

* Concentration changes in oxygenated
(HbO) and deoxygenated hemoglobin
(HbR) indicators of mental effort

* Used in a wide variety of working
memory research

* L ess invasive

 Allows us to more closely replicate
real working environments + tasks!

ntration change (uM)

Conce

22

23

fNIRS: Basics

* Infrared light is emitted by
several sensors, and after going
through tissue, some of this gets
reabsorbed by detectors

 The headband is divided into
multiple optodes

G

, Light Detector
Light Source (LED)

9INNA.1 1315
Optode Zones ® (2)

10 12 14 16

Biopac fNIRS 2000s

24

Processing fNIRS Data

* Signal Quality (SNR)

- Channel exclusions (poorly fit optodes) 220 - Unmttered., ' :

« Visual Inspection, PHEOBE OWWWWWM

- Motion artifact correction Z 107 VF | |

« Visual inspection + Wavelet filtering (high freq. spikes) 0_///——‘

- Physiological Noise = T T
- Filtering, denoising, baseline drift correction 2 OWW

- Bandpass filtering (> 0.2 and < 0.01Hz heartbeat, respiratory resp) = "2;10.7 T

« LF de-noising (SSD, PCA, GloAvg) °'VW\/V\I“/V\/\/V’VW\/\/\’\/\[\/\/\/\/\/V\/V”\N’V\/VV\/\

- Detecting task evoked activation :10 | " Gordiac
« Using both Hbo, HbR and combination (Oxy) °WWW*‘WWWWWMMWWM

i 1 _]

- Block Averaging control vs task (t-test, ANOVA)
- GLM
- Community continues to work towards standardized methodologies

. .
40 60 80 100
Time (seconds)

o
N
o

Hocke, Lia M., et al. "Automated processing of fNIRS data—a visual guide to the pitfalls and consequences." Algorithms 11.5 (2018): 67.
Klein, Franziska, and Cornelia Kranczioch. "Signal processing in fNIRS: a case for the removal of systemic activity for single trial data."
Frontiers in human neuroscience 13 (2019): 331. 25

Electroencephalography (EEG)

* Measures electrical impulses in the
brain

* Different patterns of oscillations of
these impulses or brain waves have
been shown to be associated with
distinct cognitive states

* Measures neuronal activity directly,
but signal can be quite noisy

26

Notable Publications

Using Psycho-Physiological Measures to Assess Task
Difficulty in Software Development

Thomas Fritz', Andrew Begel*, Sebastian C. Miillert, Serap Yigit-Elliott-, Manuela Zigert

fUniversity of Zurich
Zurich, Switzerland

ABSTRACT

Software developers make programming mistakes that cause
serious bugs for their customers. Existing work to detect
problematic software focuses mainly on post hoc identifica-
tion of correlations between bug fixes and code. We propose
a new approach to address this problem — detect when soft-
ware developers are experiencing difficulty while they work
on their programming tasks, and stop them before they can
introduce bugs into the code.

In this paper, we investigate a novel approach to classify
the difficulty of code comprehension tasks using data from
psycho-physiological sensors. We present the results of a
study we conducted with 15 professional programmers to
see how well an eye-tracker, an electrodermal activity sen-
sor, and an electroencephalography sensor could be used to
predict whether developers would find a task to be difficult.

*Microsoft Research ° Exponent
Redmond, WA USA

Bellevue, WA USA

1. INTRODUCTION

Knowing how hard a task is as it is being performed can
help in many dimensions. For instance, the estimate for
completing a task might be revised or the likelihood of a
bug occurring in the source code changes for the task might
be predicted. Existing work to determine task difficulty
has mainly focused on already existing artifacts, such as
task descriptions, and the similarity of artifacts using ma-
chine learning classifiers. In our research, we are investigat-
ing a novel approach to determine task difficulty that uses
psycho-physiological data gathered from the developer while
he is working, such as electroencephalographic (EEG) activ-
ity along the forehead or electrodermal activity (EDA). By
using psycho-physiological sensors and collecting data while
a developer is performing a task, we present the first ap-
proach that can support an instantaneous measure of task

- Among the first studies
to combine multiple
biometrics — EEG, EDA,
eyetracking

- EEG and eye tracking
metrics can distinguish
between task difficulty
at coarse level

Fritz, Thomas, et al. "Using psycho-
physiological measures to assess task
difficulty in software development."
Proceedings of the 36th international
conference on software engineering.

2014. -

Notable Publications

- Experienced programmers)

comprehend programs with
lower cognitive load than less
experienced programmers

- Self reported programming
efficiency better correlated
with efficiency of
comprehension when
compared to years of
experience

- EEG and eyetracking

Correlates of Programmer Efficacy and Their Link to Experience:

A Combined EEG and Eye-Tracking Study

Norman Peitek
Saarland University,
Saarland Informatics Campus
Saarbriicken, Germany

Annabelle Bergum
Saarland University,
Saarland Informatics Campus,
Graduate School of Computer Science

Maurice Rekrut
German Research Center for Artificial
Intelligence, Saarland Informatics
Campus, Saarbriicken, Germany

Saarbriicken, Germany

Jonas Mucke

Chemnitz, Germany

Matthias Nadig
Chemnitz University of Technology =~ German Research Center for Artificial
Intelligence, Saarland Informatics

Chris Parnin
NC State University
Raleigh, North Carolina, USA

Campus, Saarbriicken, Germany

Janet Siegmund

Chemnitz University of Technology

Chemnitz, Germany

ABSTRACT

Background: Despite similar education and background, program-

mers can exhibit vast differences in efficacy. While research has
identified some potential factors, such as programming experience
and domain knowledge, the effect of these factors on programmers’
efficacy is not well understood.

Aims: We aim at unraveling the relationship between efficacy

(speed and correctness) and measures of programming experience.

We further investigate the correlates of programmer efficacy in
terms of reading behavior and cognitive load.
Method: For this purpose, we conducted a controlled experiment

Sven Apel
Saarland University,
Saarland Informatics Campus
Saarbriicken, Germany

KEYWORDS

Programmer efficacy, program comprehension, cognitive load, elec-
troencephalography, eye tracking

ACM Reference Format:

Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias
Nadig, Chris Parnin, Janet Siegmund, and Sven Apel. 2022. Correlates of
Programmer Efficacy and Their Link to Experience: A Combined EEG and
Eye-Tracking Study. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE "22), November 14-18, 2022, Singapore, Singapore. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549084

Peitek, Norman, et al. "Correlates of programmer efficacy and their link to experience: A combined EEG and eye-tracking study." Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2022.

28

Comparison of brain imaging techniques %

fMRI fNIRS EEG
Measures BOLD BOLD Electrical activity
Delay Several seconds Several seconds Milliseconds
Temporal Resolution ~1-2seconds ~1-2seconds Milliseconds
Spatial Resolution ++ + —
Participant Restrictions — + ++
Environmental Limitations — ++ +
Portable No Yes* Yes*
Financial Costs - + +

29

Combining Brain Imaging with
Eyetracking

Qe

Eye tracking to improve explanatory
power of Neural Imaging

* A single measurement method is not
sufficient to understand the full
complexity of the cognitive processes

involved in program comprehension l
* Using a multi-modal approach to

e . . . E T k
connect the cognitive processes to Brain Imaging ye racking
H H Cognitive Load Specific identifiers
behavior. i.e. connect eye movement in the Source code

patterns and brain activation to the

programmer’s strategy of program
comprehension

A novel framework for program comprehension research

COGNITVE LOAD

fNIRS @

Measures hemoglobin
concentrations using
near-infrared light

,,,,,,,,,

EYE TRACKER .—l

Placed under the screen and
captures gazes over source
code elements

Cognitive load, also known as mental
effort, varies over the course of the
task, as the task difficulty changes .

SYNCH ®
Eyetracking and fNIRS

data is synchronized
temporally

SOURCE CODE ELEMENTS

Cognitive load data is associated with specific
source code elements. We can identify areas of
code that caused increased levels of cognitive
load.

SOFTWARE ¢
ENGINEERING TASKS

Participants completed software
engineering tasks, like bug localization
or code review, during the experiment.

32

The Effect of Poor Source Code Lexicon and Readability on
Developers’ Cognitive Load

Sarah Fakhoury, Yuzhan Ma
Venera Arnaoudova
Washington State University
School of Electrical Engineering and Computer Science
{sfakhour,ymal,varnaoud}@eecs.wsu.edu

ABSTRACT

It has been well documented that a large portion of the cost of any
software lies in the time spent by developers in understanding a
program’s source code before any changes can be undertaken. One
of the main contributors to software comprehension, by subsequent
developers or by the authors themselves, has to do with the quality
of the lexicon, (i.e., the identifiers and comments) that is used by
developers to embed domain concepts and to communicate with
their teammates. In fact, previous research shows that there is a
positive correlation between the quality of identifiers and the qual-
ity of a software project. Results suggest that poor quality lexicon
impairs program comprehension and consequently increases the
effort that developers must spend to maintain the software. How-
ever, we do not yet know or have any empirical evidence, of the
relationship between the quality of the lexicon and the cognitive
load that developers experience when trying to understand a piece
of software. Given the associated costs, there is a critical need to
empirically characterize the impact of the quality of the lexicon on
developers’ ability to comprehend a program.

Olusola Adesope
Washington State University
Educational Psychology Program, College of Education
olusola.adesope@wsu.edu

ACM Reference Format:

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope.
2018. The Effect of Poor Source Code Lexicon and Readability on Developers’
Cognitive Load. In ICPC '18: 26th IEEE/ACM International Conference on
Program Comprehension, May 27-28, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3196321.3196347

1 INTRODUCTION

Program comprehension is a fundamental activity within the soft-
ware development life cycle. An important contributor to software
comprehension has to do with the quality of the lexicon, i.e., the
identifiers (names of programming entities such as classes or vari-
ables) and comments that are used by developers to embed domain
concepts and to communicate with their teammates. Previous stud-
ies show that source code contains 42% of the domain terms [19)]
meaning that the lexicon is a way to express understanding of the
problem domain and solution, and comment upon the ideas that

A novel framework for program comprehension research

ACM SIGSOFT
distinguished
paper award

Fakhoury, Sarah, et al. "The
effect of poor source code
lexicon and readability on
developers' cognitive load."
Proceedings of the 26th
Conference on Program

Comprehension. 2018. .

Linguistic Antipatterns (LAs)

Poor recurring practices that
create inconsistencies between ine[]

naming, documentation, and
implementation of the software

isReached;

private static boolean stats = true;

Arnaoudova, Venera; Di Penta, Massimiliano; Antoniol, Giuliano. Linguistic Antipatterns: What They are and How Developers Perceive
Them. Empirical Software Engineering (EMSE), 21 (1), pp. 104-158, 2015.

34

Experiment Design

® Assign participants to a control group or treatment group

® Each participant performs a bug localization task on several code

snippets
o We collect open source code snippets and inject bugs into

them

e Treatment group viewed same code as control group, but we inject
linguistic anti-patterns (LAs) into the code
o This isolates any increased neuronal activity in the treatment

group to the LAs injected into the code

Experiment Setup
£ e =

36

Experiment Protocol

ONLINE

Demographic Survey

Comprehension

Setup
Eligibility Survey . § minutes . Task

2 minutes

Repeat

O

A

~

} Bug Localization
. Task .

Follow-up
Questions
3 minutes

. Rest Period
1 minute

} 6 minutes

C

=

Post Analysis
Survey

5 minutes

37

Results: Impact of Linguistic Antipatterns

» Correctness: 65% of participants are successful
at finding the bug. Compared to 77% of

participants for the control task. ﬁ
* Speed: Takes almost twice as long to find the D
same bug. 5 minutes vs 3 minutes for control |
* Cognitive Impact: Poor lexicon significantly
increased cognitive load, measured by HbO

[=]
=]

-~

(=2}

[+

£

[=]
w

and HbR concentrations (p=0.005 witK large
effect size) 02

Centrol LA Structural LA & Structural
Treatment Type

* Not immediately obvious to participants why
the code was causing inconsistencies in their
mental model

...and more!

EMSE 20 ®
Measuring the impact of lexical and structural Check for

inconsistencies on developers’ cognitive load during updates

bug localization

Sarah Fakhoury' - Devjeet Roy’ - Yuzhan Ma? - Venera Arnaoudova’ -
Olusola Adesope3

Published online: 8 August 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

A large portion of the cost of any software lies in the time spent by developers in understand-
ing a program’s source code before any changes can be undertaken. Measuring program
comprehension is not a trivial task. In fact, different studies use self-reported and vari-
ous psycho-physiological measures as proxies. In this research, we propose a methodology
using functional Near Infrared Spectroscopy (fNIRS) and eye tracking devices as an objec-
tive measure of program comprehension that allows researchers to conduct studies in
environments close to real world settings, at identifier level of granularity. We validate our
methodology and apply it to study the impact of lexical, structural, and readability issues
on developers’ cognitive load during bug localization tasks. Our study involves 25 under-
graduate and graduate students and 21 metrics. Results show that the existence of lexical
inconsistencies in the source code significantly increases the cognitive load experienced

Both lexical and structural
inconsistencies cause
reduced performance, but
only lexical
inconsistencies result in
increased cognitive load

Self report task difficulty,
total fixation duration and
cognitive load are not
aligned; they seem to
measure different aspects
of task difficulty

Fakhoury, Sarah, et al. "Measuring the impact of lexical and structural inconsistencies on developers’ cognitive load during bug localization."
Empirical Software Engineering 25 (2020): 2140-2178.

39

Tool Support for Biometrics in SE

Limitations of existing tools

* Existing fNIRS toolkits do not
combine multimodal data like
eye tracking

* Existing tools for eye tracking
map gazes over images, not
source code elements!

Need new tools that allow
dynamic visualization of
multimodal data

Select number: 0‘;’17?»701‘—‘ VV_Aard‘*."-numb
‘.S’i".-‘vmnm . /"“.
*’J“‘. S .
))
@):e- o) e
Wz o v @
@ w w
Bi an Services Reward:
® °©
).’ Y

"&‘uablr.'alances e

¢, Airtime R12.70

©

v Vv vy

(d)

VITALSE: Data Visualization and Analysis for Biometrics in SE

ICSE 20

VITALSE: Visualizing Eye Tracking and Biometric Data

Devjeet Roy
devjeet.roy@wsu.edu
Washington State University
Pullman, Washington

ABSTRACT

Recent research in empirical software engineering is applying tech-
niques from neurocognitive science and breaking new grounds in
the ways that researchers can model and analyze the cognitive
processes of developers as they interact with software artifacts.
However, given the novelty of this line of research, only one tool
exists to help researchers represent and analyze this kind of multi-
modal biometric data. While this tool does help with visualizing
temporal eyetracking and physiological data, it does not allow for
the mapping of physiological data to source code elements, instead
projecting information over images of code. One drawback of this
is that researchers are still unable to meaningfully combine and
map physiological and eye tracking data to source code artifacts.
The use of images also bars the support of long or multiple code
files, which prevents researchers from analyzing data from experi-
ments conducted in realistic settings. To address these drawbacks,
we propose VITALSE, a tool for the interactive visualization of com-
bined multi-modal biometric data for software engineering tasks.
VITALSE provides interactive and customizable temporal heatmaps
created with synchronized eyetracking and biometric data. The
tool supports analysis on multiple files, user defined annotations
for points of interest over source code elements, and high level
customizable metric summaries for the provided dataset. VITALSE,

Sarah Fakhoury
sarah.fakhoury@wsu.edu
Washington State University
Pullman, Washington

Venera Arnaoudova
venera.arnaoudova@wsu.edu
Washington State University

Pullman, Washington

electrodermal activity (EDA) to investigate task difficulty during
code comprehension.

The use of neuroimaging in the domain is still in its infancy. In his
keynote at the International Conference on Program Comprehen-
sion (ICPC’19), Westley Weimer summarizes the less than a dozen
papers so far published using high-resolution medical imaging tech-
nologies and highlights the “game changing” areas in program com-
prehension that open up opportunities for new research [11]. The
papers published thus far, use either functional Magnetic Resonance
Imaging (fMRI) or functional Near Infrared Spectroscopy (fNIRS)
techniques. In the last couple of years, researchers started combin-
ing eye tracking and brain imaging techniques together [3, 4, 7].
However, in this novel integration of brain imaging techniques in
empirical software engineering studies, researchers rely on tools
developed for neurocognitive science practitioners in other do-
mains. Thus, identifying a clear gap in the tool support available
for interdisciplinary researchers in this expanding field.

For example, the studies using fMRI to evaluate program com-
prehension [9, 10] have had to rely on tools such as BrainVoyager!
and SPM? which are helpful for the analysis of brain imaging data,
but do not integrate other software engineering artifacts, which
is vital for modeling cognitive process during tasks such as pro-
gram comprehension. Recent studies we have conducted use a brain

42

Roy, Devjeet, Sarah Fakhoury, and
Venera Arnaoudova. "VITALSE:
visualizing eye tracking and
biometric data." Proceedings of the
ACM/IEEE 42nd International
Conference on Software
Engineering: Companion
Proceedings. 2020.

VITALSE 1.0

* |Interactive visualization of multi-
modal biometric data over source
code

* Can visualize generic biometric
data annotated with eyetracking
data

- Useful for exploratory data
analysis, qualitative analysis and
post experiment interviews

File Level Metrics
Mean Normalized Oxy: 0.3977

: oxy_optode_x
Median Normalized Oxy: 0.3628 “
Mean Gaze Duration: 290.64ms bk hbo_optode_a
Median Gaze Duration: 202.00ms 2] %
Duration: 04m53s
. N
Brush Metrics
Mean Gaze Duration: 207.77ms
Duration: 00m31s ooy T v v v T v v hbr_optode_a
OOmids OOmBds COmSEs Olmids Olmdds OLmSds Odmilds 02wlds O2wids Omids Odmdds ODmSds Oomlds Odmdds
Mean Normalized Oxy: 0.0849
using System;

Heatmap Radius

Oxy Hbo Hbt Gaze Duration class SubStringTestClass
Heatmap Intensity

Oxy Hbo Hbt Gaze Duration /* This method counts the number of non-overlapping occurrences

Heatmap Style * of a substring inside a string.
Boxed Regqular * ais the string to search
* b is the substring to look for inside of 3
H |
g::?;ptwﬁjm“ = * Ex: print method1("the three truths™,"th")

* will print 3"
*
public static int method 1(this string 3, string b)
{
intx=0;
if (a.Contains(b))
for (inti= 0:i < alength; i++)
if(a Substring(-),&fggth >= b.length)
{

bool equals = a.Substring(i, b.Length). Equals(b);
if (equals)
{

X+
/MNeed to set i to the next starting character to check in a
i=blength-1;

}
}

return x

gazel

e ~2010-2015 Eye tracking
data is mapped to static
images or videos of code

* 2015 ITrace [1] introduces
way to track gazes on large
source code snippets inside of
an IDE, automatic mapping to
code elements

Addresses major limitation:
cannot run or edit code,
limiting the kind of program
comprehension studies
researchers can conduct.

[1] Shaffer, T.R., Wise, J.L., Walters, B.M., Miiller, S.C., Falcone, M. and Sharif, B., 2015, August. itrace: Enabling eye tracking on software artifacts within the ide to support

import React, { Component, useState, useEffect, useCallback } from "react";

class Draggable extends Component {
constructor(props) {
super(props);

this.state = {
dragEnabled: false,
dragStart: null

3

this.onMouseDown = this.onMouseDown.bind(this);
this.onMouseUp = this.onMouseUp.bind(this);
this.onMouseMove = this.onMouseMove.bind(this);

}

onMouseUp(e) {
document.removeEventListener("mousemove”, this.onMouseMove, true);
document.removeEventListener ("mouseug this#onMouseUp, true);

}

componentWillUnmount() {
document.removeEventListener("mousemove”, this.onMouseMove, true);
document..oveEventListener("mouseup", this.onMouseUp, true);

}

onMouseMove(e) {
const dx = e.clientll - this.state.dragStart.x;
const dy = e.clientY - this.state.dragStart.y;

if (this.props.onDrag) {
this.props.onDrag(dx, dy);

software engineering tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (pp. 954-957).

44

Supporting real-

world tasks

Snapshot 2

60

61 def start_mock_server

62
63
64
65
66
67
68
69

70

71):

72
73

Snapshot 1

60

61 def start_mock_server(Fixation 1 mapped to
62 frequency: float, . :

63 duration: float, [dict] on/ine 64
64 data: List[dilt],

65 timing_fn: Callable[[], float],

66 ort: int,

67 \E)/ait=False, Fixation 2 mgpped to
68 degay=1, —, delayon line 68
69 data_path="./",

70):

71 interval = 1 / freg3ency

712

Fixation 3 mapped to
frequency on line 71

(—
frequency: float, Fma?on 1rnappedto
duration: float, [dict] online 64
data: List[ddct],

timing_fn: Callablel[[
new_arg : float,

1, float],

port: int, —_—__——_——_—_—J
w2 t=False, Fixation 2 incorrectly

delay=1,
data_path="./",
3

interval = 1 / freque

mapped to wait on line 68

Fixation 3 incorrectly mapped to
ey whitespace on line 71

45

gazel: Supporting Experiments with Code Edits

ICSE 21

gazel: Supporting Source Code Edits in

Eye-Tracking Studies

Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland

Washington State University, USA
{first.]ast} @wsu.edu

Venera Arnaoudova
Washington State University, USA
venera.arnaoudova@wsu.edu

Abstract—Eye tracking tools are used in software engineering
research to study various software development activities.
However, a major limitation of these tools is their inability to
track gaze data for activities that involve source code editing. We
present a novel solution to support eye tracking experiments for
tasks involving source code edits as an extension of the iTrace
|9] community infrastructure. We introduce the iTrace-Atom
plugin and gazel [go'zel]—a Python data processing pipeline
that maps gaze information to changing source code elements
and provides researchers with a way to query this dynamic data.
iTrace-Atom is evaluated via a series of simulations and is
over 99% accurate at high eye-tracking speeds of over 1,000Hz.
iTrace and gazel completely revolutionize the way eye tracking

Bonita Sharif
University of Nebraska-Lincoln, USA
bsharif @unl.edu

Cole S. Peterson
University of Nebraska-Lincoln, USA
Cole.Scott.Peterson @huskers.unl.edu

Jonathan I. Maletic
Kent State University, USA
jmaletic@kent.edu

tasks that can be studied using eye trackers (e.g., bug fix or
feature addition).

This paper presents a novel solution to address the editing
limitation, as an extension to the iTrace [9] infrastructure.
We propose iTrace-Atom, a plugin that tracks gaze and
edit information over source code files in the Atom edi-
tor, accompanied by gazel [go'zel] (gaze edit evolution) a
Python data processing library to analyze the data collected
by iTrace-Atom.

Researchers can use these tools to track source code el-
ements as they move and change throughout the course of

Y iITrace-Atom

@ gazel

Fakhoury, Sarah, et al. "gazel: Supporting
source code edits in eye-tracking studies."
2021 IEEE/ACM 43rd International
Conference on Software Engineering:
Companion Proceedings (ICSE-Companion).
IEEE, 2021.

46

,27, SLr1Ng HUMANKeauaDierLlapseallme (UOUDLE Seconus) {

2 string human_readable;
Heatmap Settings v 2
[} 525 if (seconds <(0) {

duration
human_readable =

oxy_optode_avg seconds = -seconds;
y

target) double milliseconds_int = seconds » 1e3;

s le_l I . P 5
mipetes if (milliseconds_int >= .995 && milliseconds_int < 1) {

source_file_col // Rouhd)up

* Work in progress

if (millisecondsiint < 999.5) {
Blometric Settings > 6 stringsitAppendf(&human_readable,
return human_readable;

"%0.3g ms", milliseconds_int);

w

Time

* Built to add support for W sl
visualization of edits during e %

§trings::Appendf(&human_readable,
return human_readable;

experiments (evolving source o

if (seconds € 24.0) {
strings::Appendf(&human_readable,

CO d e) return human_readable;
}

seconds /= 24.0;

if (seconds ¢186.0) {
strings::Appendf(&human_readable, "%0.3g days", seconds);
return human_readable;

w

"%0.3g min", seconds);

"%0.3g h", seconds);

-

}

iff(seconds <"368\2425) {
string§::Appendf(&human_readable, "%0.3
return human_readable;

months", seconds / 30.436875);

-

}

seconds /= 365.2425;

strings::Appendf(&human_readable, "%0.3g years", seconds);
return human_readable;

You will be using this in the

} // namespace strings

ha ndS'On tOd ay! } // namespace tensorflow

oxy_optode_avg ® hbr_optode_avg ® hbo_optode_avg ® hbt_optode_avg

What’s next?

® Biometrics provides us with a new lens to view human factors in SE

* How do we operationalize our findings from biometrics to build
tools and languages that support program comprehension?

Tooling support for biometrics for SE is still in its infancy. We need

more community support to build a better ecosystem to support
biometric research in SE.

® Advancements in biometrics:

o The current state of biometrics places many constraints on what
we can study. Can we move past the current limitations?

Hands-on Tutorials

Getting Started

Download the supporting materials from:

https://tinyurl.com/SIESTA23-Biometrics

Overview of activities

1. Setting Up and Data Preprocessing
2. Introduction to VitalSE 2.0

3. Exercises

O

WASHINGTON STATE
[UNIVERSITY

https://tinyurl.com/SIESTA23-Biometrics

