
© Copyright Microsoft Corporation. All rights reserved.

AI for SE
In the era of ChatGPT

Michele Tufano

Sr. Research Scientist

© Copyright Microsoft Corporation. All rights reserved.

About me

Team Collaborations

What I work on

• AI Models Assessment for Software Engineering Tasks

• Driving AI for Code Model Improvements

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

AI for SE

~

(mostly LLMs for Code)

© Copyright Microsoft Corporation. All rights reserved.

Light Finetuning Strategies

Reinforcement Learning from Human Feedback

Prompting Strategies

Evaluation of LLMs for Code

Agenda

📢 Your inputs and ideas 🚀

AI for SE

~

(mostly LLMs for Code)

© Copyright Microsoft Corporation. All rights reserved.

Large Language Models

OpenAI GPT-3 style LLMs

Decoder-only Transformer Models trained to predict the next word

Unsupervised Pre-Training on large amount of text using Masked Self-Attention

Images from: https://jalammar.github.io/

Input Words Words to Predict

© Copyright Microsoft Corporation. All rights reserved.

Large Language Models

OpenAI GPT-3 style LLMs

Codex (code-cushman-001)

• 12 billion parameters

• Pretrained specifically on code

• Efficient to finetune on specific tasks

Davinci (text-davinci-003)

• 175 billion parameters

• Similar to ChatGPT

• Expensive to finetune

Images from: https://jalammar.github.io/

© Copyright Microsoft Corporation. All rights reserved.

Efficient finetuning for LLMs

© Copyright Microsoft Corporation. All rights reserved.

LoRA aims to learn the change factor ∆𝑊.

Assuming the pre-training matrix is denoted as 𝑊0 ∈ 𝑅𝑑∗𝑘，

the update to the pre-trained matrix can be represented as follows ：

𝑊0 + ∆𝑊 = 𝑊0 + 𝐵𝐴, 𝐵 ∈ 𝑅𝑑∗𝑟 , 𝐴 ∈ 𝑅𝑟∗𝑘

The rank 𝑟 ≪ 𝑚𝑖𝑛(𝑑, 𝑘)

Training

Both 𝑊0 and ∆𝑊 are multiplied by the same input 𝑥, resulting in the following:

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥

Inference

Only necessary to add the change factor back into the original model:

𝑊 = 𝑊0 + 𝐵𝐴

LoRA: Low-Rank Adaption of LLMs

© Copyright Microsoft Corporation. All rights reserved.

How can we train

many personalized

models?

© Copyright Microsoft Corporation. All rights reserved.

Freeze part of the

model 🥶

Let other parts change

Finetune a prefix

• Compute

• Finetuning Time

• Space and memory

Trade-offs

© Copyright Microsoft Corporation. All rights reserved.

Reinforcement

Learning from

Human

Feedback

© Copyright Microsoft Corporation. All rights reserved.

ChatGPT!

© Copyright Microsoft Corporation. All rights reserved.

ChatGPT!

© Copyright Microsoft Corporation. All rights reserved.

ChatGPT!

© Copyright Microsoft Corporation. All rights reserved.

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

How can I use RLHF?

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

© Copyright Microsoft Corporation. All rights reserved.

Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model
How can I use RLHF?

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

© Copyright Microsoft Corporation. All rights reserved.

Stage 2. Reward model learns to predict

preferences (human- or automatically-generated)

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

How can I use RLHF? Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

© Copyright Microsoft Corporation. All rights reserved.

Stage 3. PPO model learns to maximize rewardStage 2. Reward model learns to predict

preferences (human- or automatically-generated)

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model
How can I use RLHF?

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

© Copyright Microsoft Corporation. All rights reserved.

Reinforcement Learning (RL) terminology

Agent: actor in an environment, learner

Environment: everything the agent can interact with, static

Policy: the agent’s strategy for selecting the next action

Action space: set of actions that the agent can take

Observation space: set of input states on which agent can train its policy

Reward: scalar signal received by agent after taking an action

Sutton & Barto
states

reward

actions

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf

© Copyright Microsoft Corporation. All rights reserved.

Reinforcement Learning (RL) part of RLHF

Agent/Policy: language model

Environment: language modeling task + reward model

Action space: all tokens in the vocabulary

Observation space: all possible input token sequences
Large! Dimension of |𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦||𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|

Reward: score returned by reward model

Sources: Sutton & Barto, Illustrating Reinforcement Learning from Human Feedback (RLHF) (huggingface.co)

State
Action

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://huggingface.co/blog/rlhf

© Copyright Microsoft Corporation. All rights reserved.

lvwerra/trl (github.com)

https://github.com/lvwerra/trl

© Copyright Microsoft Corporation. All rights reserved.

Reward model training

Format Input Label Loss Example

Pairwise comparison prompt,

completion_0,

completion_1

binary choice: which

completion is preferred

BCE Hello,

 - world! ✅

 - Mars! ❌

Choice: completion 0

Scalar reward prompt,

completion

floating-point reward

value

MSE Hello,

 - world! Reward: 8.0

 - Dolly! Reward: 6.0

 - Mars! Reward: 1.0

Binary reward prompt,

completion

binary reward value:

0 = bad,

1 = good

BCE Hello,

 - world! Reward: 1

 - Mars! Reward: 0

© Copyright Microsoft Corporation. All rights reserved.

Open-Source tools for RLHF

© Copyright Microsoft Corporation. All rights reserved.

November 30 2022

ChatGPT is released

© Copyright Microsoft Corporation. All rights reserved.

Boom, ChatGPT is out!

And just like that, scientists turned into Prompt Engineers.

© Copyright Microsoft Corporation. All rights reserved.

Alright, for real though, prompting is cool.

© Copyright Microsoft Corporation. All rights reserved.

Prompting

Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and

most accurate response.

Prompt Engineering

Model Tuning

Post-processing

LLM

© Copyright Microsoft Corporation. All rights reserved.

Prompting

Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and

most accurate response.

Prompt Engineering

Model Tuning

Post-processing

LLM

© Copyright Microsoft Corporation. All rights reserved.

Input-Output

Prompting
Review: These wireless earbuds are amazing! The sound

quality is superb, and they fit comfortably in my ears.

Sentiment:

Zero-shot

© Copyright Microsoft Corporation. All rights reserved.

Input-Output

Prompting
Review: The fitness tracker exceeded my expectations. It

accurately tracks my steps and heart rate, and the app

is easy to use.

Sentiment: positive

Review: I regret buying this fitness tracker. It constantly

gave inaccurate readings, and the battery life is bad.

Sentiment: negative

Review: This blender is a game-changer in my kitchen.

Sentiment: positive

Review: These wireless earbuds are amazing! The sound

quality is superb, and they fit comfortably in my ears.

Sentiment:

Few-shot

© Copyright Microsoft Corporation. All rights reserved.

How to select

examples?

Retrieval

• K-NN Clustering

• Contrastive Learning

Choose examples that are semantically similar to the test example

using k-NN clustering in the embedding space

What Makes Good In-Context Examples for GPT-3? [Liu et. al]

💡

© Copyright Microsoft Corporation. All rights reserved.

Input-Output

Prompting
Few-shot

• Diverse selection of examples

• Relevant to the test sample

• In random order to avoid majority label bias and recency bias.

General Suggestions

© Copyright Microsoft Corporation. All rights reserved.

Input-Output

Prompting
Instruction: You are provided with a review for a

product. Analyze the review and extract the sentiment.

The sentiment label should be "positive" or "negative”.

Review: These wireless earbuds are amazing! The sound

quality is superb, and they fit comfortably in my ears.

Sentiment:

Instruction Prompting

Few-shot learning might incur high

token costs, which constrain the

input/output budget.

Why not just give the instruction

directly to the LLM?

© Copyright Microsoft Corporation. All rights reserved.

Chain of Thought

Prompting (CoT)

Idea

Generate a series of concise sentences

that outline reasoning steps, referred to

as reasoning chains or rationales,

culminating in the ultimate solution.

Effectiveness

• Effective for complex tasks

• Marginal improvements for simple

task

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models [Wei et. al]

© Copyright Microsoft Corporation. All rights reserved.

Chain of Thought

Prompting (CoT)

Self-Consistency Improves Chain of Thought Reasoning in Language Models [Wang et. al]

Idea

1. Sample a diverse set of reasoning paths

2. Take a majority vote

• The model itself

• External validator

with Self Consistency

© Copyright Microsoft Corporation. All rights reserved.

Tree of Thoughts

Prompting (ToT)

Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Yao et. al]

Idea

1. Decomposes the problem into multiple

thought steps

2. Generates multiple thoughts per step,

essentially creating a tree structure.

3. Explore the tree with BFS or DFS

4. Validate each step (voting)

© Copyright Microsoft Corporation. All rights reserved.

Ok, but what about the SE part?

✨ That’s your time to shine! ✨

© Copyright Microsoft Corporation. All rights reserved.

Ok, but what about the SE part?

✨ That’s your time to shine! ✨

© Copyright Microsoft Corporation. All rights reserved.

Design a 3-steps CoT or ToT for Performance Bug Resolution

1. Work individually or in team

2. Take up to 5 mins

3. Submit your design (be concise)

4. Vote the best design (not your own)

Steps

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

InferFix: End-to-End Program Repair
with LLMs over Retrieval-Augmented Prompts

Speaker: Michele Tufano

Co-authors: Matthew Jin, Syed Shahriar, Xin Shi, Shuai Lu, Neel Sundaresan, Alexey Svyatkovskiy

© Copyright Microsoft Corporation. All rights reserved.

InferFix: End-to-End Program Repair

Problem

Detect and fix critical bugs for security, reliability, and performance issues.

Automate these steps for developers in the Continuous Integration (CI) pipeline

End-to-End Solution

Bug Detection -> Classification -> Localization -> Resolution

Leverage Large Language Models (LLMs)

Integrated in the CI Pipeline

Benefits

Identify and fix bugs early during the development process

Developers can focus on faster delivery of new features

© Copyright Microsoft Corporation. All rights reserved.

Overview - InferFix: End-to-End Program Repair

© Copyright Microsoft Corporation. All rights reserved.

Infer

Infer is a static analyzer that relies on formal verification to detect software errors statically.

Null Pointer Dereference Resource Leak Thread Safety Violation

Program attempts to access or

manipulate data using a null pointer

A resource (file, database, etc.) is not

properly released or closed after it is no

longer needed, potentially leading to

unexpected behavior.

Concurrent access or modification of

shared data by multiple threads leads to

unexpected and incorrect results due to

race conditions and lack of

synchronization.

© Copyright Microsoft Corporation. All rights reserved.

InferredBugs Dataset

Repositories

• 2.9k Java

• 3.3k C#

• 1 million commits

Infer Analysis
• Analyze change history of a repo

• Detect Bug Introduction

• Detect Bug-Fix

Bug Data

• Bug type

• Bug Location

• Introduction/Fix in the change history

Bug-Fixes

• Java: 8,650

• C#: 2,945

• Total: 11,595

© Copyright Microsoft Corporation. All rights reserved.

Large Language Models

OpenAI GPT-3 style LLMs

Codex (code-cushman-001)

• 12 billion parameters

• Pretrained specifically on code

• Efficient to finetune on specific tasks

Davinci (text-davinci-003)

• 175 billion parameters

• Similar to ChatGPT

• Expensive to finetune

Images from: https://jalammar.github.io/

© Copyright Microsoft Corporation. All rights reserved.

LLM Prompting Strategies

Completion Demonstration Instruction

Buggy Code

Fixed Code

// Buggy code

// Fixed code

Buggy Code

Fixed Code

// Buggy code

// Fixed code

Buggy Code

// Buggy code

Buggy Code

// Buggy code

You are an expert

developer.

When given a buggy

code …

// Fixed code Output fixed code:

© Copyright Microsoft Corporation. All rights reserved.

InferFix

Building

Stages

1. Prompting Strategies vs Finetuning Model

2. Adding Bug Type information

3. Adding Bug Localization information

4. Extended File-level Context

5. Enriching context with Bug-Fix Hints

© Copyright Microsoft Corporation. All rights reserved.

Prompting Strategies

vs Finetuning
Finetuning

InferredBugs

Codex InferFix

Metric: Perfect Match

Identical predictions to the dev’s fix

Basic Prompt

Just the buggy Code

6.2% - 36.7% Improvement

InferFix over second best

Instruction (Davinci)

© Copyright Microsoft Corporation. All rights reserved.

Bug Type

1.4% - 3.5% Improvement

Adding bug info

to the prompt

© Copyright Microsoft Corporation. All rights reserved.

Bug Localization

0.6% - 2.5% Improvement

Adding bug localization

to the prompt

© Copyright Microsoft Corporation. All rights reserved.

Extended File-Level Context with eWASH

Problem

Provide as much code context as possible from the buggy file

Model input is limited in tokens, and file may be truncated

eWASH Approach

Allows to fill the model input with as much context as possible

Defines a syntax-based priority system to dynamically choose context

based on available token budget

1. Buggy Method and Class Name

2. Imports, variables, and method signatures

3. Method docstrings

4. Method bodies

© Copyright Microsoft Corporation. All rights reserved.

Extended Context

with eWASH

3.7% - 5.4% Improvement

Adding extended context

to the prompt

© Copyright Microsoft Corporation. All rights reserved.

Enriching context with Bug-Fix Hints

Buggy Code

Fixed Code

Similar Buggy Code

Steps

• Search for similar buggy code in a historical database of bug-fixes

• Select the fixed version of the bug

• Provide the example of the bug-fix to the model

Idea

Find examples on how to fix a similar bug, and provide it to the model

InferredBugs

© Copyright Microsoft Corporation. All rights reserved.

Enriching context with Bug-Fix Hints

Retriever Model

Bidirectional Transformer Encoder Model that maps a code snippet to an embedding

Trained using contrastive learning objective:

• Minimized distance from positive examples

• Maximize distance from negative examples

Positive Examples -> Bugs of the same type

Negative Examples -> Bugs of different type

Retrieving Steps

1. Generate embedding for given buggy code

2. Compute cosine similarity with the bugs in the db

3. Select the associated fixed code (key-value pair)

© Copyright Microsoft Corporation. All rights reserved.

Enriching context with Bug-Fix Hints

We parse and analyze the code identifier types and

mask the names of classes, methods, and identifiers

with placeholder symbols: CLASS_NN, METHOD_NN,

and VAR_NN, where NN is a unique number

Abstraction

To extract structurally similar fixes and reduce the dependency on identifier naming

we obfuscate code snippets

Process

© Copyright Microsoft Corporation. All rights reserved.

Enriching context

with Bug-Fix Hints

0.9%- 2.5% Improvement

Adding bug-fix hints

to the prompt

© Copyright Microsoft Corporation. All rights reserved.

Overall Results

Prompt Augmentation

Augmenting the prompt is beneficial:

• Bug type & Location

• Context

• Bug-Fix hints

5.1% - 13% Improvement

Finetuning Boost

Finetuning on bug dataset

improves performances

on top of finetuning

© Copyright Microsoft Corporation. All rights reserved.

Resource Leak

© Copyright Microsoft Corporation. All rights reserved.

InferFix: End-to-End Program Repair with LLMs

Integrated in the

CI Pipeline
Paper on ArXiv Contacts

Augmented Prompt

Michele Tufano

Michele.Tufano@microsoft.com

Sr. Research Scientist

© Copyright Microsoft Corporation. All rights reserved.

How to evaluate LLM capabilities for Code?

✨ That’s your time to shine! ✨

© Copyright Microsoft Corporation. All rights reserved.

Human-Eval
Evaluation Harness for Code Generation

Task

Synthesizing programs from docstrings

Evaluation

Check Functional Correctness

by computing tests passing rate

© Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval
Evaluation Harness for Coverage Prediction

Task

Predicting code coverage for a given:

• Method

• Test Case

Goal

Evaluate LLM capabilities to understand

code execution in terms of coverage

© Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval
Evaluation Harness for Coverage Prediction

Important metric for quantifying the number of

statements and branches executed during

testing

Requires instrumenting the code, building and

monitoring its execution

What is Coverage?

How it works?

• LLMs that performs well on this task may

generate better code.

• LLMs could replace/improve the process of

code coverage computation

Potential Benefits

© Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval
Evaluation Harness for Coverage Prediction

Dataset Creation Steps

1. Start with Human-Eval dataset with

problems, code solutions, and tests

2. Spit each test case in a single-assert test

case (each test now covers less

statements/branches)

3. Collect coverage information by running

coverage.py

4. Parse and organize the dataset

© Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval
Evaluation Harness for Coverage Prediction

Prompting

• Start with a System NL prompt

explaining the task

• Mimic a terminal environment

• Cat code to show it

• Run coverage computation

• Show zero, one, multiple examples

• Show current focal method and test

© Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval
Evaluation Harness for Coverage Prediction

Leaderboard

• GPT-4 obtains the best results

• All models struggle on branches

• Challenging task for LLMs

Future Work

• Open models like StarCoder or Llama2

• Pretrain model on this task

• Investigate benefits on code generation

© Copyright Microsoft Corporation. All rights reserved.

How to evaluate LLM capabilities for Code?

What are other capabilities to evaluate?

© Copyright Microsoft Corporation. All rights reserved.

How to evaluate LLM capabilities for Code?

What are other capabilities to evaluate?

© Copyright Microsoft Corporation. All rights reserved.

© Copyright Microsoft Corporation. All rights reserved.

Questions?

Michele Tufano

Sr. Research Scientist

Michele.Tufano@microsoft.com

	Default Section
	Slide 1: AI for SE In the era of ChatGPT
	Slide 4: About me
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: AI for SE ~ (mostly LLMs for Code)
	Slide 11: AI for SE ~ (mostly LLMs for Code)
	Slide 12: Large Language Models
	Slide 13: Large Language Models
	Slide 14: Efficient finetuning for LLMs
	Slide 15: LoRA: Low-Rank Adaption of LLMs
	Slide 17: How can we train many personalized models?
	Slide 18: Freeze part of the model 🥶 Let other parts change Finetune a prefix
	Slide 19: Reinforcement Learning from Human Feedback
	Slide 20: ChatGPT!
	Slide 21: ChatGPT!
	Slide 22: ChatGPT!
	Slide 23: How can I use RLHF?
	Slide 24: How can I use RLHF?
	Slide 25: How can I use RLHF?
	Slide 26: How can I use RLHF?
	Slide 27: Reinforcement Learning (RL) terminology
	Slide 28: Reinforcement Learning (RL) part of RLHF
	Slide 29
	Slide 30: Reward model training
	Slide 31: Open-Source tools for RLHF
	Slide 32: November 30 2022
	Slide 33: Boom, ChatGPT is out! And just like that, scientists turned into Prompt Engineers.
	Slide 34: Alright, for real though, prompting is cool.
	Slide 35: Prompting
	Slide 36: Prompting
	Slide 37: Input-Output Prompting
	Slide 38: Input-Output Prompting
	Slide 39: How to select examples?
	Slide 40: Input-Output Prompting
	Slide 41: Input-Output Prompting
	Slide 42: Chain of Thought Prompting (CoT)
	Slide 43: Chain of Thought Prompting (CoT)
	Slide 44: Tree of Thoughts Prompting (ToT)
	Slide 45: Ok, but what about the SE part?
	Slide 46: Ok, but what about the SE part?
	Slide 47: Design a 3-steps CoT or ToT for Performance Bug Resolution
	Slide 48
	Slide 49: InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts
	Slide 50: InferFix: End-to-End Program Repair
	Slide 52: Overview - InferFix: End-to-End Program Repair
	Slide 53: Infer
	Slide 54: InferredBugs Dataset
	Slide 56: Large Language Models
	Slide 59: LLM Prompting Strategies
	Slide 60: InferFix Building Stages
	Slide 61: Prompting Strategies vs Finetuning
	Slide 62: Bug Type
	Slide 63: Bug Localization
	Slide 64: Extended File-Level Context with eWASH
	Slide 65: Extended Context with eWASH
	Slide 66: Enriching context with Bug-Fix Hints
	Slide 67: Enriching context with Bug-Fix Hints
	Slide 68: Enriching context with Bug-Fix Hints
	Slide 69: Enriching context with Bug-Fix Hints
	Slide 70: Overall Results
	Slide 72: Resource Leak
	Slide 73
	Slide 74: How to evaluate LLM capabilities for Code?
	Slide 75: Human-Eval
	Slide 76: Coverage-Eval
	Slide 77: Coverage-Eval
	Slide 78: Coverage-Eval
	Slide 79: Coverage-Eval
	Slide 80: Coverage-Eval
	Slide 81: How to evaluate LLM capabilities for Code?
	Slide 82: How to evaluate LLM capabilities for Code?
	Slide 83
	Slide 84: Questions?
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 94

