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About me

Team Collaborations

What I work on

• AI Models Assessment for Software Engineering Tasks

• Driving AI for Code Model Improvements
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AI for SE 

~

(mostly LLMs for Code)
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Light Finetuning Strategies

Reinforcement Learning from Human Feedback

Prompting Strategies

Evaluation of LLMs for Code

Agenda

📢 Your inputs and ideas 🚀 

AI for SE 

~

(mostly LLMs for Code)
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Large Language Models

OpenAI GPT-3 style LLMs

Decoder-only Transformer Models trained to predict the next word

Unsupervised Pre-Training on large amount of text using Masked Self-Attention

Images from: https://jalammar.github.io/

Input Words Words to Predict



© Copyright Microsoft Corporation. All rights reserved. 

Large Language Models

OpenAI GPT-3 style LLMs

Codex (code-cushman-001)

• 12 billion parameters

• Pretrained specifically on code

• Efficient to finetune on specific tasks

Davinci (text-davinci-003)

• 175 billion parameters

• Similar to ChatGPT

• Expensive to finetune

Images from: https://jalammar.github.io/
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Efficient finetuning for LLMs
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LoRA aims to learn the change factor ∆𝑊.

Assuming the pre-training matrix is denoted as 𝑊0 ∈ 𝑅𝑑∗𝑘， 

the update to the pre-trained matrix can be represented as follows ：

𝑊0 + ∆𝑊 = 𝑊0 + 𝐵𝐴, 𝐵 ∈ 𝑅𝑑∗𝑟 , 𝐴 ∈ 𝑅𝑟∗𝑘

The rank 𝑟 ≪ 𝑚𝑖𝑛(𝑑, 𝑘)

Training

Both 𝑊0 and ∆𝑊 are multiplied by the same input 𝑥, resulting in the following:

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥

Inference

Only necessary to add the change factor back into the original model:

𝑊 = 𝑊0 + 𝐵𝐴

LoRA: Low-Rank Adaption of LLMs
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How can we train 

many personalized 

models?
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Freeze part of the 

model 🥶

Let other parts change

Finetune a prefix

• Compute

• Finetuning Time

• Space and memory

Trade-offs
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Reinforcement 

Learning from 

Human 

Feedback
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RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

How can I use RLHF?

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325
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Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model
How can I use RLHF?

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325
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Stage 2. Reward model learns to predict 

preferences (human- or automatically-generated)

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

How can I use RLHF? Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325
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Stage 3. PPO model learns to maximize rewardStage 2. Reward model learns to predict 

preferences (human- or automatically-generated)

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model
How can I use RLHF?

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325
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Reinforcement Learning (RL) terminology

Agent: actor in an environment, learner

Environment: everything the agent can interact with, static

Policy: the agent’s strategy for selecting the next action

Action space: set of actions that the agent can take

Observation space: set of input states on which agent can train its policy

Reward: scalar signal received by agent after taking an action

Sutton & Barto
states

reward

actions

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
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Reinforcement Learning (RL) part of RLHF

Agent/Policy: language model

Environment: language modeling task + reward model

Action space: all tokens in the vocabulary

Observation space: all possible input token sequences
Large! Dimension of |𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦||𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒|

Reward: score returned by reward model

Sources: Sutton & Barto, Illustrating Reinforcement Learning from Human Feedback (RLHF) (huggingface.co)

State
Action

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://huggingface.co/blog/rlhf
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lvwerra/trl (github.com)

https://github.com/lvwerra/trl
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Reward model training

Format Input Label Loss Example

Pairwise comparison prompt, 

completion_0, 

completion_1

binary choice: which 

completion is preferred

BCE Hello,

        - world!       ✅

        - Mars!        ❌

Choice: completion 0

Scalar reward prompt, 

completion

floating-point reward 

value

MSE Hello,

        - world!  Reward: 8.0

        - Dolly!   Reward: 6.0

        - Mars!   Reward: 1.0

Binary reward prompt, 

completion

binary reward value:

0 = bad,

1 = good

BCE Hello,

        - world!   Reward: 1

        - Mars!    Reward: 0
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Open-Source tools for RLHF
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November 30 2022

ChatGPT is released
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Boom, ChatGPT is out! 

And just like that, scientists turned into Prompt Engineers.
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Alright, for real though, prompting is cool.
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Prompting

Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and 

most accurate response.

Prompt Engineering

Model Tuning

Post-processing

LLM
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Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and 

most accurate response.

Prompt Engineering

Model Tuning

Post-processing

LLM
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Input-Output 

Prompting
Review: These wireless earbuds are amazing! The sound 

quality is superb, and they fit comfortably in my ears. 

Sentiment: 

Zero-shot



© Copyright Microsoft Corporation. All rights reserved. 

Input-Output 

Prompting
Review: The fitness tracker exceeded my expectations. It 

accurately tracks my steps and heart rate, and the app 

is easy to use.

Sentiment: positive

Review: I regret buying this fitness tracker. It constantly 

gave inaccurate readings, and the battery life is bad.

Sentiment: negative

Review: This blender is a game-changer in my kitchen. 

Sentiment: positive

Review: These wireless earbuds are amazing! The sound 

quality is superb, and they fit comfortably in my ears. 

Sentiment: 

Few-shot
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How to select 

examples?

Retrieval

• K-NN Clustering

• Contrastive Learning

Choose examples that are semantically similar to the test example 

using k-NN clustering in the embedding space

What Makes Good In-Context Examples for GPT-3? [Liu et. al]

💡
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Input-Output 

Prompting
Few-shot

• Diverse selection of examples

• Relevant to the test sample 

• In random order to avoid majority label bias and recency bias.

General Suggestions
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Input-Output 

Prompting
Instruction: You are provided with a review for a 

product. Analyze the review and extract the sentiment. 

The sentiment label should be "positive" or "negative”. 

Review: These wireless earbuds are amazing! The sound 

quality is superb, and they fit comfortably in my ears. 

Sentiment: 

Instruction Prompting

Few-shot learning might incur high 

token costs, which constrain the 

input/output budget.

Why not just give the instruction 

directly to the LLM?
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Chain of Thought

Prompting (CoT)

Idea

Generate a series of concise sentences 

that outline reasoning steps, referred to 

as reasoning chains or rationales, 

culminating in the ultimate solution. 

Effectiveness

• Effective for complex tasks

• Marginal improvements for simple 

task

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models [Wei et. al]
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Chain of Thought

Prompting (CoT)

Self-Consistency Improves Chain of Thought Reasoning in Language Models [Wang et. al]

Idea

1. Sample a diverse set of reasoning paths

2. Take a majority vote

• The model itself

• External validator

with Self Consistency
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Tree of Thoughts

Prompting (ToT)

Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Yao et. al]

Idea

1. Decomposes the problem into multiple 

thought steps

2. Generates multiple thoughts per step, 

essentially creating a tree structure.

3. Explore the tree with BFS or DFS

4. Validate each step (voting)
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Ok, but what about the SE part?

✨ That’s your time to shine! ✨
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Ok, but what about the SE part?

✨ That’s your time to shine! ✨
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Design a 3-steps CoT or ToT for Performance Bug Resolution

1. Work individually or in team

2. Take up to 5 mins

3. Submit your design (be concise)

4. Vote the best design (not your own)

Steps
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InferFix: End-to-End Program Repair 
with LLMs over Retrieval-Augmented Prompts

Speaker: Michele Tufano

Co-authors: Matthew Jin, Syed Shahriar, Xin Shi, Shuai Lu, Neel Sundaresan, Alexey Svyatkovskiy  
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InferFix: End-to-End Program Repair

Problem

Detect and fix critical bugs for security, reliability, and performance issues.

Automate these steps for developers in the Continuous Integration (CI) pipeline

End-to-End Solution

Bug Detection -> Classification -> Localization -> Resolution

Leverage Large Language Models (LLMs)

Integrated in the CI Pipeline

Benefits

Identify and fix bugs early during the development process

Developers can focus on faster delivery of new features
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Overview - InferFix: End-to-End Program Repair
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Infer

Infer is a static analyzer that relies on formal verification to detect software errors statically.

Null Pointer Dereference Resource Leak Thread Safety Violation

Program attempts to access or 

manipulate data using a null pointer

A resource (file, database, etc.) is not 

properly released or closed after it is no 

longer needed, potentially leading to 

unexpected behavior.

Concurrent access or modification of 

shared data by multiple threads leads to 

unexpected and incorrect results due to 

race conditions and lack of 

synchronization.
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InferredBugs Dataset

Repositories

• 2.9k Java

• 3.3k C#

• 1 million commits

Infer Analysis
• Analyze change history of a repo

• Detect Bug Introduction

• Detect Bug-Fix

Bug Data

• Bug type

• Bug Location

• Introduction/Fix in the change history

Bug-Fixes

• Java: 8,650

• C#: 2,945

• Total: 11,595
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Large Language Models

OpenAI GPT-3 style LLMs

Codex (code-cushman-001)

• 12 billion parameters

• Pretrained specifically on code

• Efficient to finetune on specific tasks

Davinci (text-davinci-003)

• 175 billion parameters

• Similar to ChatGPT

• Expensive to finetune

Images from: https://jalammar.github.io/
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LLM Prompting Strategies

Completion Demonstration Instruction

Buggy Code

Fixed Code

// Buggy code

// Fixed code

Buggy Code

Fixed Code

// Buggy code

// Fixed code

Buggy Code

// Buggy code

Buggy Code

// Buggy code

You are an expert 

developer.

When given a buggy 

code …

// Fixed code Output fixed code:
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InferFix

Building

Stages

1. Prompting Strategies vs Finetuning Model

2. Adding Bug Type information

3. Adding Bug Localization information

4. Extended File-level Context

5. Enriching context with Bug-Fix Hints
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Prompting Strategies

vs Finetuning
Finetuning

InferredBugs

Codex InferFix

Metric: Perfect Match

Identical predictions to the dev’s fix

Basic Prompt

Just the buggy Code

6.2% - 36.7% Improvement

InferFix over second best 

Instruction (Davinci)
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Bug Type

1.4% - 3.5% Improvement

Adding bug info 

to the prompt
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Bug Localization

0.6% - 2.5% Improvement

Adding bug localization

to the prompt
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Extended File-Level Context with eWASH

Problem

Provide as much code context as possible from the buggy file

Model input is limited in tokens, and file may be truncated

eWASH Approach

Allows to fill the model input with as much context as possible

Defines a syntax-based priority system to dynamically choose context

based on available token budget

1. Buggy Method and Class Name

2. Imports, variables, and method signatures

3. Method docstrings

4. Method bodies
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Extended Context

with eWASH

3.7% - 5.4% Improvement

Adding extended context

to the prompt
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Enriching context with Bug-Fix Hints

Buggy Code

Fixed Code

Similar Buggy Code

Steps

• Search for similar buggy code in a historical database of bug-fixes

• Select the fixed version of the bug

• Provide the example of the bug-fix to the model

Idea

Find examples on how to fix a similar bug, and provide it to the model

InferredBugs
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Enriching context with Bug-Fix Hints

Retriever Model

Bidirectional Transformer Encoder Model that maps a code snippet to an embedding

Trained using contrastive learning objective:

• Minimized distance from positive examples

• Maximize distance from negative examples

Positive Examples -> Bugs of the same type

Negative Examples -> Bugs of different type

Retrieving Steps

1. Generate embedding for given buggy code

2. Compute cosine similarity with the bugs in the db

3. Select the associated fixed code (key-value pair)
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Enriching context with Bug-Fix Hints

We parse and analyze the code identifier types and 

mask the names of classes, methods, and identifiers 

with placeholder symbols: CLASS_NN, METHOD_NN, 

and VAR_NN, where NN is a unique number

Abstraction

To extract structurally similar fixes and reduce the dependency on identifier naming 

we obfuscate code snippets

Process
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Enriching context 

with Bug-Fix Hints

0.9%- 2.5% Improvement

Adding bug-fix hints

to the prompt
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Overall Results

Prompt Augmentation

Augmenting the prompt is beneficial:

• Bug type & Location

• Context

• Bug-Fix hints

5.1% - 13% Improvement

Finetuning Boost

Finetuning on bug dataset 

improves performances

on top of finetuning
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Resource Leak
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InferFix: End-to-End Program Repair with LLMs 

Integrated in the 

CI Pipeline
Paper on ArXiv Contacts

Augmented Prompt

Michele Tufano

Michele.Tufano@microsoft.com

Sr. Research Scientist
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How to evaluate LLM capabilities for Code?

✨ That’s your time to shine! ✨
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Human-Eval
Evaluation Harness for Code Generation

Task

Synthesizing programs from docstrings

Evaluation

Check Functional Correctness 

by computing tests passing rate
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Coverage-Eval
Evaluation Harness for Coverage Prediction

Task

Predicting code coverage for a given:

• Method

• Test Case

Goal

Evaluate LLM capabilities to understand 

code execution in terms of coverage
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Coverage-Eval
Evaluation Harness for Coverage Prediction

Important metric for quantifying the number of 

statements and branches executed during 

testing

Requires instrumenting the code, building and 

monitoring its execution

What is Coverage?

How it works?

• LLMs that performs well on this task may 

generate better code.

• LLMs could replace/improve the process of 

code coverage computation

Potential Benefits
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Coverage-Eval
Evaluation Harness for Coverage Prediction

Dataset Creation Steps

1. Start with Human-Eval dataset with 

problems, code solutions, and tests

2. Spit each test case in a single-assert test 

case (each test now covers less 

statements/branches)

3. Collect coverage information by running 

coverage.py

4. Parse and organize the dataset
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Coverage-Eval
Evaluation Harness for Coverage Prediction

Prompting

• Start with a System NL prompt 

explaining the task

• Mimic a terminal environment

• Cat code to show it

• Run coverage computation

• Show zero, one, multiple examples 

• Show current focal method and test
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Coverage-Eval
Evaluation Harness for Coverage Prediction

Leaderboard

• GPT-4 obtains the best results

• All models struggle on branches

• Challenging task for LLMs

Future Work

• Open models like StarCoder or Llama2

• Pretrain model on this task

• Investigate benefits on code generation
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How to evaluate LLM capabilities for Code?

What are other capabilities to evaluate?
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How to evaluate LLM capabilities for Code?

What are other capabilities to evaluate?
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Questions?

Michele Tufano

Sr. Research Scientist

Michele.Tufano@microsoft.com
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