= Microsoft

Al for SE

In the era of ChatGPT

Michele Tufano
Sr. Research Scientist

& Data+Al

© Copyright Microsoft Corporation. All rights reserved.

About me

What | work on

* Al Models Assessment for Software Engineering Tasks
» Driving Al for Code Model Improvements

Team Collaborations

. GitHub
y Copilot

© Copyright Microsoft Corporation. All rights reserved.

5,

Data+Al

{®

4:20pm

2

Gabriele Bavota

100 % I

®

© Copyright Microsoft Corporation. All rights reserved.

5,

Data+Al

{®

4:20pm

2

Gabriele Bavota

100 % I

®

Sure!

© Copyright Microsoft Corporation. All rights reserved.

5,

Data+Al

ull 4:20pm 100 % I

<o 3 ®

Gabriele Bavota

Sure!

Discovers lack of experience in 90min presentations

© Copyright Microsoft Corporation. All rights reserved.

5,

Data+Al

ull 4:20pm 100 % I

<o 3

Gabriele Bavota

Sure!

Discovers lack of experience in 90min presentations

Recognizes potential to delegate work to students®

®

© Copyright Microsoft Corporation. All rights reserved.

5,

Data+Al

ull 4:20pm 100 % I

<o 3 ®

Gabriele Bavota

Sure!

Discovers lack of experience in 90min presentations

Recognizes potential to delegate work to students®

It will be great!

O

© Copyright Microsoft Corporation. All rights reserved.

Al for SE

(mostly LLMs for Code)

© Copyright Microsoft Corporation. All rights reserve:

Al for SE

(mostly LLMs for Code)
Agenda

Light Finetuning Strategies

Reinforcement Learning from Human Feedback
Prompting Strategies
Evaluation of LLMs for Code
' Your inputs and ideas &’

© Copyright Microsoft Corporation. All rights reserve:

Large Language Models

OpenAl GPT-3 style LLMs
Decoder-only Transformer Models trained to predict the next word
Unsupervised Pre-Training on large amount of text using Masked Self-Attention

Unsupervised Pre-training

— o — — — — — — Masked Self-Attention
{ \ Correct output (label):

Input (features) a robot must | - L

| Output (Prediction) | Input Words Words to Predict

© Copyright Microsoft Corporation. All rights reserved.

Images from: https://jalammar.github.io/

Large Language Models

OpenAl GPT-3 style LLMs

Codex (code-cushman-001)

* 12 billion parameters

» Pretrained specifically on code

» Efficient to finetune on specific tasks

Davinci (text-davinci-003)
* 175 billion parameters

« Similar to ChatGPT

» Expensive to finetune

a robot must obey the orders given it
cpro 00 OO0 HEE BN BN BN BN
1 1 1 1 1 1 1 1
| | | | | | | |
(r)
1 Transformer Decoder
_ _J
[| | | | | [| | | | | | | | |
a N
2 Transformer Decoder
_ _J
| | | | | | | | | | | | | | | |
C)
| | | | | | | | | | | | | | | |
(96 Transformer Decoder J
1 | | | | | | /

v v v v v v

© Copyright Microsoft Corporation. All rights reserved.

Images from: https://jalammar.github.io/

Efficient finetuning for LLMs

© Copyright Microsoft Corporation. All rights reserve:

LoRA: Low-Rank Adaption of LLMs

Pretrained
Weights

W e]ded

¥ | |

Figure 1: Our reparametriza-
tion. We only train 4 and B.

LoRA aims to learn the change factor AW.

Assuming the pre-training matrix is denoted as W, € R**¥,

the update to the pre-trained matrix can be represented as follows :
Wy + AW = W, + BA,B € R**",A € R™F

The rank r K min(d, k)

Training
Both W, and AW are multiplied by the same input x, resulting in the following:
h =Wyx + AWx = Wyx + BAx

Inference
Only necessary to add the change factor back into the original model:

W =W, + BA

© Copyright Microsoft Corporation. All rights reserved.

How can we train
many personalize
models?

& Data+Al

Exploring and Evaluating Personalized Models
for Code Generation

Andrei Zlotchevski Dawn Drain Alexey Svyatkovskiy
McGill University Anthropic Microsoft
Montreal, Quebec, Canada San Francisco, CA, USA Redmond, WA, USA
andrei.zlotchevski@mail. mcgill.ca dawn@anthropic.com alsvyatk@microsoft.com
Colin B. Clement Neel Sundaresan Michele Tufano
Microsoft Microsoft Microsoft
Redmond, WA, USA Redmond, WA, USA Redmond, WA, USA
coclemen@microsoft.com neels@microsoft.com mitufano@microsoft.com
ABSTRACT ACM Reference Format:

Large Transformer models achieved the state-of-the-art status for
Natural Language Understanding tasks and are increasingly be-
coming the baseline model architecture for modeling source code.
Transformers are usually pre-trained on large unsupervised cor-
pora, learning token representations and transformations relevant
to modeling generally available text, and are then fine-tuned on
a particular downstream task of interest. While fine-tuning is a
tried-and-true method for adapting a model to a new domain - for
example, questic ing on a given topic - generalization re-
mains an on-going challenge. In this paper, we explore and evaluate
transformer model fine-tuning for personalization. In the context
of generating unit tests for Java methods, we evaluate learning to
personalize to a specific software project using several personal-
ization techniques. We consider three key approaches: (i) custom
fine-tuning, which allows all the model parameters to be tuned; (i)
lightweight fine-tuning, which freezes most of the model’s parame-
ters, allowing tuning of the token embeddings and softmax layer
only or the final layer alone; (iii) prefix tuning, which keeps model
parameters frozen, but optimizes a small project-specific prefix vec-
tor. Each of these techniques offers a trade-off in total compute
cost and predictive performance, which we evaluate by code and
task-specific metrics, training lime, and total computational opera-
tions. We compare these fine-tuning strategies for code generation
and discuss the potential generalization and cost benefits of each
in various deployment scenarios.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; « Information systems — Recommender systems.

KEYWORDS

Personalized Models, Code Generation

Permission to make digital or hard copics of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copics bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Ab ing with credit is permitted. 'To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissis org.

ESEC/FSE 22, November 14-18, 2022, Singapore, Singapore

® 2022 Association for C ing Machincry.

ACM ISBN 978-1-4503-9413-0/22/11...$15.00
https://doi.org/10.1145/3540250.3558959

Andrei Zlotchevski, Dawn Drain, Alexey Svyatkovskiy, Colin B. Clement,
Neel Sundaresan, and Michele Tufano. 2022. Exploring and Evaluating Per-
sonalized Models for Code Generation. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering (ESEC/FSE '22), November 14-18, 2022, Singa-
pore, Singapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3540250.3558959

1 INTRODUCTION

It is well-known that even the best models can fail to generalize
properly to new domains, and even to new users of said models.
For example, a model trained to answer questions in general may
not answer StackOverflow questions as well as the questions in
the training domain, or a software developer in an Enterprise envi-
ronment with private code may have libraries and attribute name
which differ from public source code used to train a code synthesis
model.

The current dominant paradigm in Natural Language Processing
(NLP) modeling is to pre-train a large transformer model [30] on a
large corpus and then fine-tune it on a particular task of interest. For
example, a question-answering (Q&A) model is generally first pre-
trained on a large corpus of textual data for the specific language
(e.g., Wikipedia, and news articles in English), then fine-tuned on
a task-specific dataset of paired questions and corresponding an-
swers. The pre-training process aims at learning semantic vector
representation of the language and words, while the fine-tuning
process specializes the model for a specific domain.

Transformer models are also increasingly the baseline archi-
tecture used for code generation tasks, such as writing methods
from natural language description [2, 5, 7], or generaling test cases
from the focal method under test [29]. Similarly for NLP tasks
these models are pre-trained on a large corpus of natural text and
publicly available source code and then fine-tuned on a specific
code-related task. Further, these models also may not generalize to
new domains of interest, and can benefit from task or even user-
specific fine-tuning, here called customization or personalization.
Customization is particularly relevant for code generation models
since it provides several benefits:

e allows fine-tuning on source code data that may not be avail-
able when training a base model (e.g., private repositories or
internal codebases), enabling improved overall performances
on codebases with proprietary dependencies and code styles;

([Linear+Softmax | [Linear+Softmax] ([Linear+Softmax | (Linear + Softmax)
+

mucgnsn —-[DECODEm muoc:om —-[DECODEm ﬂumnzn H DECODEN mksnxl ENC(:DER | —+{ ererx | DECODERN
(encooer] \‘[DECDDER] ((encoper)} (:Noimzn Ji ‘[DECODER) (prerix | encoper]\\\\\‘[PREFIX | LoE]
(ENCSDER] DECODER] || (Tencooer) (ENC(:DER DECODER] ("prerix | EncoDer | "‘"“\"?{ PREFIX | DECODER]
F reeze pa rt Of th e : s } ' DE(ZDDER % { ENCODER } { o] S i (prerix | encoper | \‘[PREFIX | LECE)
(ENC%DER] DECODER] (ENCSDER] (ENC{)DER) DECODER) (Prernx | Encoper | \‘[PREFIX | DECODER]
m Od eI (ENC?DER) | DECODER | (Encoper | (END(:DER) ” DECODER | (" prerix | encoper) ” {anan DECODER |
[encooer | ".:.‘I‘IT DECODER] || [Cewcooer] "'::‘.:‘ (ENC?DER) M DECODER | ((prerx | encoper | ﬂ,:ﬂ: { PREFIX | DECODER)
(encooer | I":"H DECDDER] || [Cencoper] "w:‘.:“[oeconer | || [ENC?DER) 'ﬂ:‘a:".t' DECODER) (prerix | ENC&:DER | I‘. ‘[PREFIX | DED(:DER)
(ENC(:DER) ",‘"I DECODER) (ENC?DER J ".‘:ﬁ DEC?DER) (encoper | "ﬂ DECODER) [prerix | Encoper | '{pnsnx[L J
(encooer | f{ DECODER] || [Encoper | :{ DECODER | || |
)

ENCODER | f DECODER) (ererx | e) ﬁmnx[usc?um]
KIENCODER] { DECODER / \[ENCODER] T DECODER]/ &ENCODER) f DECODER]/ &REFMI ENCODER | TPREFIX[DECODEIy

f f f F
(Embeddings] (Embeddings] (Embeddings | (Embeddings)
(a) Custom (b) L-EO (c) L-LDB (d) Prefix

Finetune a prefix

o —— Custom
— L-EO
Trade-offs 35 -
+ Compute 5 B0
* Finetuning Time o
* Space and memory =
9 2.0
8 1.5:
0 \
& Data-+Al

10! 10° 10! 102 103
Compute

Re I n fO rce m e nt Learning to summarize from human feedback
Lea r n I n g fro m Nisan Stiennon® Long Ouyang® Jeff Wu* Daniel M. Ziegler* Ryan Lowe"

n Chelsea Voss* Alec Radford Dario Amodei Paul Christiano*
Huma -
Feedback

As language models become more powerful, training and evaluation are increas-
ingly bottlenecked by the data and metrics used for a particular task. For example,
summarization models are often trained to predict human reference summaries and
evaluated using ROUGE, but both of these metrics are rough proxies for what we
really care about—summary quality. In this work, we show that it is possible to
significantly improve summary quality by training a model to optimize for human
preferences. We collect a large, high-quality dataset of human comparisons be-
tween summaries, train a model to predict the human-preferred summary, and use
that model as a reward function to fine-tune a summarization policy using reinforce-
ment learning. We apply our method to a version of the TL;DR dataset of Reddit
posts [63] and find that our models significantly outperform both human reference
summaries and much larger models fine-tuned with supervised learning alone. Our
models also transfer to CNN/DM news articles [22], producing summaries nearly
as good as the human reference without any news-specific fine-tuning.> We con-
duct extensive analyses to understand our human feedback dataset and fine-tuned
models.” We establish that our reward model generalizes to new datasets, and that
optimizing our reward model results in better summaries than optimizing ROUGE
according to humans. We hope the evidence from our paper motivates machine
learning researchers to pay closer attention to how their training loss affects the
model behavior they actually want.

1 Introduction

Large-scale language model pretraining has become increasingly prevalent for achieving high per-
formance on a variety of natural language processing (NLP) tasks. When applying these models
to a specific task, they are usually fine-tuned using supervised learning, often to maximize the log
probability of a set of human demonstrations.

arXiv:2009.01325v3 [cs.CL] 15 Feb 2022

While this strategy has led to markedly improved performance, there is still a misalignment between
this fine-tuning objective—maximizing the likelihood of human-written text—and what we care
about—generating high-quality outputs as determined by humans. This misalignment has several
causes: the maximum likelihood objective has no distinction between important errors (e.g. making
up facts [41]) and unimportant errors (e.g. selecting the precise word from a set of synonyms); models

N “This was a joint project of the OpenAl Reflection team. Author order was randomized amongst {LO, JW,
‘“\ D a t a + A I DZ, NS}: CV and RL were full-time contributors for most of the duration. PC is the team lead.
L 5 1Samp]es from all of our models can be viewed on our website.

*We provide inference code for our 1.3B models and baselines, as well as a model card and our human
feedback dataset with over 64k summary comparisons, here.

© Collect human feedback

A Reddit post is
sampled from —
the Reddit [
TL;DR dataset. —

Various policies
are used to
sample a set of

summaries.

Two summaries
are selected for — —

evaluation. — —
L l J

A human judges

which is a better

summary of the

post.

\)

% is better than k™

© Collect human feedback

A Reddit post is
sampled from JE—
the Reddit [
TL;DR dataset. ——

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for — —

evaluation. — —
L l J
A human judges
which is a better
summary of the
post.

\)

% is better than k™

© Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

-
¥
¥
&
I
¥
[
[
r
]
]
i

L

l

= ==

® R

N

—

loss = log(afr - r,))

I

% is better than k”

© Collect human feedback © Train reward model © Train policy with PPO

A Reddit post is One post with A new post is
sampled from JE— two summaries — — sampled from the E—
the Reddit — judged by a — — dataset. m—
TL;DR dataset. _— human are fed — = —
to the reward — —
— model. — — —

summaries. reward r for
each summary.

Two summaries
are selected for — —
evaluation. — —

-
[

\)

l The loss is I : The reward :

The policy i
Various policies The reward generates a
are used to model summary for the
sample a set of calculates a post.
r
|
L

calculated based

_ ; ; model calculates
A:_urgn |L:Ddgt|tes on the rewards areward for the
which is a better and human label, summary. ‘

LT

summary of the and is used to loss = |Og{0(f} - rk-)) ‘

[}
r

post. update the ;
reward model. T The reward is ;
\L used to update .
the policy via

% is better than k” % is better than k” PPO. r

How can | use RLHF?

Fine-Tuning summary
Reddit post (aka supervised fine-tuning, model tuning) o=
iEA
=5 Target
Prediction) " o
Pre-trained Model
- >~ CTITTT] —
l J O tunable @
Input text

2

’ Compare and update model

. . . Candidate g—
Redditpost | Summary Reinforcement Learning from Human Feedback ammary o
“}__rz g:: (aka RLHF) Prediction
o=
my ISIEIRIEIENE
Input text Better target Pre-trained Model
1 \ * reward Unseen @ :
f o \ ’ Reddit post |g—b o) O tunable O Eval dicti
% N valuate prediction
BN (11T ~ / Reward Model \ Learn to
\ @ tunable & | predict I I I I A]
[(TT1TT11] \ / preference L . J Use reward
~ } e ~
L 1 gt Y : * reward Input text to train modzl [Reward Model |
Input text Worse target S7 reward 4= | ¥ frozen)

Comparison of customization methods for Reddit summarization use case.

© Copyright Microsoft Corporation. All rights reserved.

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.orq)

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

How can | use RLHF?

2

Stage 1. (optional) SFT model learns to fit your dataset.
Or start from a pre-trained model

Fine-Tuning summary
Roddit post (aka supervised fine-tuning, model tuning) =
iEA
= Target
Prediction . L ‘
Pre-trained Model ' '
Il - = [[TT17T7]
.) O tunable @
Input text ..

’ Compare and update model

; - . g Candidate 9—
Redditpost | Summary Reinforcement Learning from Human Feedback ammary o
“}_;Z g:: (aka RLH F) Prediction
o=
my ISIEIRIEIENE
Input text Better target Pre-trained Model
. " * reward Unseen @ 0 0 . 2
f Sl ! //—\ P Reddit post k= - funable Evaluate prediction
B (T &~ / Reward Model) Learn to
|\ O tunable 0 ,'l predict _ 3
1 v J/ P | r - Lereward TN
\] ”]
. : 10 T ‘ e] Input text to train model /" Reward Model
Input text Worse target

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.orq)

5" reward 4= | % frozen % |
AN 4

Comparison of customization methods for Reddit summarization use case

© Copyright Microsoft Corporation. All rights reserved.

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

HOW Ccan | use RLH F7 Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model

Fine-Tuning summary
Reddit post (aka supervised fine-tuning, model tuning) =
= Target

Prediction) L :
- | PrerenedModel o T —
._ . O tunable @

Input text ’ Compare and update model

2
r 5
Reddit post Summary

. . . .z
Reinforcement Learning from Human Feedback priallt =
G@ g:: (aka RLHF) Prediction
o=
my ISIEIRIEIENE
Input text Better target . ’ Unecen Pre-trained Model
f Vo | — & e Reddit post GL;% - 0 tunable 0 : ' T
B T s Reward Model S Feluate precicton
[vt ot) O i T T ITITT ;
e s ¢) I prpernce [T | Userewand \ S
" T b v " * reward R to train model .-’/ Reward Model \‘-.
Input text Worse target 5" reward 4= '.,‘ 2 frozen 8% ’,.'
N\ 4
Stage 2 Reward mOdeI Iearns tO predICt Comparison of customization methods for Reddit summarization use case.
preferences (human- or automatically-generated)

© Copyright Microsoft Corporation. All rights reserved.
RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.org)

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

HOW Ccan | use RLH F7 Stage 1. (optional) SFT model learns to fit your dataset.

Or start from a pre-trained model

Fine-Tuning summarny
Reddit post (aka supervised fine-tuning, model tuning) =
7
= Target
Prediction

Pre-trained Model " : '
EEEEEEE - [TT7TT] -
. , O tunable @

Input text ’ Compare and update model

2
r 5
Reddit post Summary

H H andidate S—
Reinforcement Learning from Human Feedback priallt =
G@ g:: (aka RLHF) Prediction
o=
my ISIEIRIEIENE
Input text Better target . ’ Unecen Pre-trained Model
' L ! — & e Reddit post qz - 0 tunable 0 ' o
EEEEE T . ;.-’f/ Reward Model \‘,I L;;r;. ;to Evaluate prediction
s o O e 0) O preference ._T Usereward \ o
: Y . Y ' > * reward R to train model |"/ Reward Model \‘-.I
Input text Worse target 5" reward <= n.‘\x # frozen # ‘./’.n
Stage 2. Reward model learns to predict Stage 3. PPO model learns to maximize reward]e_
preferences (human- or automatically-generated)

RLHF | Babel (aml-babel.com), [2009.01325] Learning to summarize from human feedback (arxiv.orq)

© Copyright Microsoft Corporation. All rights reserved.

https://aml-babel.com/models/open-ai/references/rlhf#how-rlhf-works
https://arxiv.org/abs/2009.01325

Reinforcement Learning (RL) terminology

- Agent: actor in an environment, learner

- Environment: everything the agent can interact with, static

- Policy: the agent’s strategy for selecting the next action

- Action space: set of actions that the agent can take

- Observation space: set of input states on which agent can train its policy
- Reward: scalar signal received by agent after taking an action

h Example 4.1 Consider the 4 x4 gridworld shown below.
| Agent |
state reward action 1 2 |a
S, R, A,
R f 4 |5 g |7 R=-1
S.. | Environment |« on all transitions
- \ i} 9 10 |11 reward
: : . S , actions
Figure 3.1: The agent-environment interaction in reinforcement learning. 1213 |14

Sutton & Barto states

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf

Reinforcement Learning (RL) part of RLHF

- Agent/Policy: language model

- Environment: language modeling task + reward model
- Action space: all tokens in the vocabulary

- Observation space: all possible input token sequences

Large! Dimension of |vocabulary||seauencel

- Reward: score returned by reward model

Candidate 8::,
summary 0=

ACtiO n Prediction

- [TIT[T[t[t[*]®] *
Unseen @ Pre-trained Model '
Reddit post lg—5 - © tunable ©
| Evaluate prediction
LLL ittty [
L Use reward —_—
Input text to train model / Reward Model \""-I

5 reward 4= ' % frozen 3%)
\‘.__—___,/

© Copyright Microsoft Corporation. All rights reserved.

Sources: Sutton & Barto, lllustrating Reinforcement Learning from Human Feedback (RLHF) (huggingface.co)

https://inst.eecs.berkeley.edu/~cs188/sp20/assets/files/SuttonBartoIPRLBook2ndEd.pdf
https://huggingface.co/blog/rlhf

lvwerra/trl (github.com)

Rollout:
- M-
“This movie is” GPT-2 “really great!”
Evaluation:
Query + Response Emal Reward model
“This movie is really great!” Classifier/Rule/Human
Optimization_ Policy gradients optimize model

Reward — ‘

o

v
-
—
Query + Response Active model
—
“This movie is really great!” mdl |0g-probs

Reference model

KL-div

https://github.com/lvwerra/trl

Reward model training

mm_lm— Loss__|Example

Pairwise comparison prompt, binary choice: which Hello,
completion_0, completion is preferred - world!
completion_1 - Mars!) ¢
Choice: completion 0
Scalar reward prompt, floating-point reward MSE Hello,
completion value - world! Reward: 8.0
- Dolly! Reward: 6.0
- Mars! Reward: 1.0
Binary reward prompt, binary reward value: BCE Hello,
completion 0 = bad, - world! Reward: 1

1 = good - Mars! Reward: 0

© Copyright Microsoft Corporation. All rights reserved.

Open-Source tools for RLHF

Colossal-Al

/// Transformer Reinforcement Learning

Colossal-Al: Making large Al models cheaper, faster, and more accessible

| | | |
() Build on Schedulem docs failing | codefactor A aHugg\ngFau:- 5% slack join @ ﬁE

TRL - Transformer Reinforcement Learning

license Apache-2.0 website@ release v0.5.0

© Copyright Microsoft Corporation. All rights reserved.

November 30 2022

ChatGPT is released

Boom, ChatGPT is out!
And just like that, scientists turned into Prompt Engineers.

Alright, for real though, prompting is cool.

@ Andrej Karpathy &

The first time | was personally shook by this philosophy was when | saw
the "Just tell the Al to be nice” meme on my Twitter, which is the same
idea - GPT can be seen as a super multi-task policy (trained via
supervised learning), and prompt engineering is the goal conditioning.

a Sam Altman &

writing a really great prompt for a chatbot persona is an amazingly high-
leverage skill and an early example of programming in a little bit of

natural language

3 - 782.8K Views

4,917 Likes

THEALTO BE NICE

Prompting

Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and
most accurate response.

@
S
-
=T
-
X
@)
=
o
(s
m
S
Q,
S
@
@
.
=
Q

~

--

--

1 ‘.
LLM Model Tuning |
S R)
Output Post-processing |

Prompting

Prompt engineering involves crafting the input to the LLM in order to guide the model towards the best and
most accurate response.

--

| Prompt Engineering :
! i
| I
I ___

|

|

|

e

| 1
! i
E Model Tuning ;
I i
I i
| J
I ___

|

Post-processing

N e e

Input-Output
Prompting

Zero-shot

& Data+Al

Review: These wireless earbuds are amazing! The sound
quality is superb, and they fit comfortably in my ears.

Sentiment:

\

4

(a) Input-Output
Prompting (10)

© Copyright Microsoft Corporation. All

rights reserved.

Input-Output
Prompting

Few-shot

Data+Al

Review: The fitness tracker exceeded my expectations. It
accurately tracks my steps and heart rate, and the app
is easy to use.

Sentiment: positive

Review: | regret buying this fitness tracker. It constantly
gave inaccurate readings, and the battery life is bad.
Sentiment: negative

Review: This blender is a game-changer in my kitchen.
Sentiment: positive

Review: These wireless earbuds are amazing! The sound
quality is superb, and they fit comfortably in my ears.

Qentiment: /

Input

\J

Output

(a) Input-Output
Prompting (1O)

© Copyright Microsoft Corporation. All rights reserved.

How to select
examples?

Retrieval

* K-NN Clustering
* Contrastive Learning

Data+Al

=

select nearest neighbors

Test Prompt

[What county is Frederick, MD in?]‘

encode

Training Data |

1 [What county is Duluth Minnesota in? J
[] o
[] ®

[N] [What Olympic athlete has won the most medals?]

-

@ Choose examples that are semantically similar to the test example
using k-NN clustering in the embedding space

e

~

Q: What county is Duluth Minnesota in?
A: St. Louis County

A:

[Q: What county is Frederick, MD in?)

[Frederick County]

Figure 2: In-context example selection for GPT-3. White dots: unused training samples; grey dots: randomly sam-
pled training samples; red dots: training samples selected by the k-nearest neighbors algorithm in the embedding

space of a sentence encoder.

© Copyright Microsoft Corporation. All rights reserved.

What Makes Good In-Context Examples for GPT-3? [Liu et. al]

Input-Output

Prompting

Few-shot General Suggestions
» Diverse selection of examples
« Relevant to the test sample

* In random order to avoid majority label bias and recency bias.

& Data+Al

© Copyright Microsoft Corporation. All rights reserved.

f
In pUt'OUtPUt Instruction: You are provided with a review for a A

o product. Analyze the review and extract the sentiment. Input
Promptl ng The sentiment label should be "positive" or "negative”.

Instruction Prompting Review: These wireless earbuds are amazing! The sound
quality is superb, and they fit comfortably in my ears.

Few-shot learning might incur high Gentimenti)
token costs, which constrain the
input/output budget.

Why not just give the instruction
directly to the LLM?

\J

(a) Input-Output
Prompting (1O)

Data+Al e N
© Copyright Microsoft Corporation. All rights reserved.

Chain of Thought
Prompting (CoT)

Idea

Generate a series of concise sentences
that outline reasoning steps, referred to
as reasoning chains or rationales,
culminating in the ultimate solution.

Effectiveness

« Effective for complex tasks
* Marginal improvements for simple
task

) Data+Al

L5

/(Model Input) \

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

_J

Model Output)

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The

Cnswer is9. & J

Input

L |

Output

(c) Chain of Thought
Prompting (CoT)

© Copyright Microsoft Corporation. All rights reserved.

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models [Wei et. al]

Chain of Thought
Prompting (CoT)

with Self Consistency

Idea
1. Sample a diverse set of reasoning paths
2. Take a majority vote

* The model itself

 External validator

& Data+Al

Marginalize out reasoning paths
to aggregate final answers

Sample a diverse set of
reasoning paths

She has 16 - 3 - 4 = 9 eggs
| left. So she makes $2*9 = | The answer is $18.
$18 per day. I)

i N

| N

’—

-+

-1—5
—_—

This means she she sells the
remainder for $2 * (16 - 4 - 3) The answer is $26.
= $26 per day. I

: l
Language The answer is $18. J

model

J
\

She eats 3 for breakfast, so |
she has 16 - 3 = 13 left. Then |
she bakes muffins, so she I The answer is $18.
has 13 - 4 = 9 eggs left. So
she has 9 eggs * $2 = $18. |

/
Majority vote

N

(c) Self Consistency
with CoT (CoT-SC)

© Copyright Microsoft Corporation. All rights reserved.

Self-Consistency Improves Chain of Thought Reasoning in Language Models [Wang et. al]

Tree of Thoughts
Prompting (ToT)

Input

Idea

1. Decomposes the problem into multiple

thought steps

2. Generates multiple thoughts per step,
essentially creating a tree structure.
3. Explore the tree with BFS or DFS

4. Validate each step (voting)

(d) Tree of Thoughts (ToT)

[
~y \ +
% h D a t a AI © Copyright Microsoft Corporation. All rights reserved.

Tree of Thoughts: Deliberate Problem Solving with Large Language Models [Yao et. al]

Ok, but what about the SE part?

© Copyright Microsoft Corporation. All rights reserve:

Ok, but what about the SE part?
4 That's your time to shine! 4

Design a 3-steps CoT or ToT for Performance Bug Resolution

Input
1. Work individually or in team

Take up to 5 mins :

2
3. Submit your design (be concise) ‘
4

TS

N\
Y Majonty vote

(c) Chain of Thought (c) Self Consistency
Prompting (CoT) with CoT (CoT-SC)

|
|
|
I
|
|
|
|
|
|
|
Vote the best design (not your own) I ! | b
|
|
|
|
|
|
|
|
|
|
|
|

(d) Tree of Thoughts (ToT)

Join at menti.com use code 2738 6756 A" Mentimeter

Design a 3-steps CoT or ToT for Performance Bug Resolution
Voting in progress

Again

GOTO
menti.com

ENTER THE CODE

2738 6756

Pe

= Microsoft

InferFix: End-to-End Program Repair
with LLMs over Retrieval-Augmented Prompts

Speaker: Michele Tufano
Co-authors: Matthew Jin, Syed Shahriar, Xin Shi, Shuai Lu, Neel Sundaresan, Alexey Svyatkovskiy

& Data+Al

© Copyright Microsoft Corporation. All rights reserved.

InferFix: End-to-End Program Repair

Problem

Detect and fix critical bugs for security, reliability, and performance issues.
Automate these steps for developers in the Continuous Integration (Cl) pipeline

End-to-End Solution

Bug Detection -> Classification -> Localization -> Resolution .
Leverage Large Language Models (LLMs) InferFix
Integrated in the Cl Pipeline

) Cl Pipeline
Benefits ‘_ o
r b
Identify and fix bugs early during the development process e af

Developers can focus on faster delivery of new features Build Test Infer

p) Main Branch (n

Overview - InferFix: End-to-End Program Repair

Pull Request

Infer Static Analysis

Detection and Classification

"kind": "ERROR",
“bug_type": "NULL_DEREFERENCE",

"qualifier": "object returned by ‘getResourceResolver(this,adaptable)’
could be null and is dereferenced at line 168.",

"severity": "HIGH",
Localization
"line": 168,

"procedure": "Designer DefineObjectsInjector.getDesigner(Object)",
"procedure_start_line": 167,
"file":

"src/main/java/com/adobe/acs/commons/models/../DefineObjectsInjector. java"

Context Extraction (eWASH, type annotation)

NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI; Query database
import com.day.cq.wcm.api.PageManager;

public class DefineObjectsInjector implements Injector {
private ResourceResolver getResourceResolver(Object adaptable) {} »
Ay

private Designer getDesigner(Object adaptable) {

of historic
bugs and fixes

<START_BUG>

return getResourceResolver(adaptable).adaptTo(Designer.class); ~
<END_BUG>

// Predicted patch
private Designer getDesigner(Object adaptable) {

ResourceResolver resolver = getResourceResolver(adaptable);
if (resolver != null) {

return resolver.adaptTo(Designer.class);
}

return null;

Large Language Model

*

// Structurally similar fix
private CLASS_1 METHOD_1(CLASS_2 VAR 1) {
CLASS_3 VAR_2 = METHOD_2(VAR_1);
if (VAR_2 != null) {
return VAR_2.METHOD_3(CLASS_1.METHOD_4);

return null;

NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;;

© Infer

Infer is a static analyzer that relies on formal verification to detect software errors statically.

Null Pointer Dereference Resource Leak Thread Safety Violation

__
————————

\
\

/ \ / P /
/) ' A resource (file, database, etc.) is not !
properly released or closed after it is no
longer needed, potentially leading to
unexpected behavior.

Concurrent access or modification of
shared data by multiple threads leads to
unexpected and incorrect results due to

race conditions and lack of
synchronization.

Program attempts to access or
manipulate data using a null pointer

|’
1
1
1
1
1
1
1
1
1
1

—— —————————
- —
—— ————————— -

/
|’
1
1
1
1
1
1
1
1
1
1

—— — ————————

p = foo(); CounterCl:
stuff(); Allocate resource count;
.goo();

p.goo(try {

!] do some stuff increment()

1 1 .

| : } finally { count++;

1 1

| i close resource

1

i i

1)

Y 1

\ /

\ /

\\\ ’,/

© Copyright Microsoft Corporation. All rights reserved.

InferredBugs Dataset

Repositories
« 2.9k Java

e 33k C#
* 1 million commits

Infer Analysis

* Analyze change history of a repo
» Detect Bug Introduction

» Detect Bug-Fix

Bug Data

* Bugtype

* Bug Location

* Introduction/Fix in the change history

Bug-Fixes

* Java: 8,650

o C#:2,945
 Total: 11,595

& Data-+Al

®

NPD RL TSV
Java C# Java C# Java C#
Num. bug patches 2686 1116 2382 1789 3582 40
Mean lines per patch 12.2 8.8 109 7.2 14.1 17.1
Mean char per patch 457.1 310.2 404.1 275.8 4827 4553

© Copyright Microsoft Corporation. All rights reserved.

Large Language Models

OpenAl GPT-3 style LLMs

Codex (code-cushman-001)

* 12 billion parameters

» Pretrained specifically on code

» Efficient to finetune on specific tasks

Davinci (text-davinci-003)
» 175 billion parameters

« Similar to ChatGPT

« Expensive to finetune

a robot must obey the orders given it
cpro 00 OO0 HEE BN BN BN BN
1 1 1 1 1 1 1 1
| | | | | | | |
(r)
1 Transformer Decoder
_ _J
[| | | | | [| | | | | | | | |
a N
2 Transformer Decoder
_ _J
| | | | | | | | | | | | | | | |
C)
| | | | | | | | | | | | | | | |
(96 Transformer Decoder J
1 | | | | | | /

v v v v v v

© Copyright Microsoft Corporation. All rights reserved.

Images from: https://jalammar.github.io/

LLM Prompting Strategies

Completion Demonstration Instruction
/ \ /// Buggy code \ You are an expert
developer.
// Fixed code When given a buggy
code ...
Fixed Code
// Buggy code // Buggy code // Buggy code

K// Fixed code / K// Fixed code / KOutput fixed code: /

Fixed Code

© Copyright Microsoft Corporation. All rights reserved.

InferFlX 1. Prompting Strategies vs Finetuning Model
Building ,
Stages

. Adding Bug Type information
3. Adding Bug Localization information
4. Extended File-level Context

5. Enriching context with Bug-Fix Hints

© Copyright Microsoft Corporation. All rights reserved.

Prompting Strategies rimetaning)

vs Finetuning InferredBugs
Codex InferFix
Metric: Perfect Match
|dentical predictions to the dev’s fix

Basic Prompt

Just the buggy Code
Approach NPD RL TSV

Java C# Java C# Java C#

Demonstration (Codex) 20.3 30.1 253 29.1 19.0 16.7
InferFix over second best Completion (Codex) 6.7 6.1 7.8 57 3.9 0.0
Instruction (Davinci) Instruction (Davinci) 405 222 53.8 197 413 333

InferFix (basic prompt) 49.7 58.1 60.0 519 644 70.0

& Data-+Al

W © Copyright Microsoft Corporation. All rights reserved.

Bug Type

NULL_DEREFERENCE

private Designer getDesigner(Object adaptable) {

return getResourceResolver(adaptable).adaptTo(Designer.class);

NPD RL TSV

Java C# Java C# Java C#

InferFix (basic prompt) 49.7 58.1 60.0 519 644 70.0

Adding bug info _
InferFix (+ bug type) 523 604 63.1 533 679 725

to the prompt

& Data-+Al

W © Copyright Microsoft Corporation. All rights reserved.

Bug Localization

Adding bug localization
to the prompt

& Data-+Al

®

NULL_DEREFERENCE

private Designer getDesigner(Object adaptable) {
<START_BUG>
return getResourceResolver(adaptable).adaptTo(Designer.class);

<END_BUG>
s
NPD RL TSV
Java C# Java C# Java C#
InferFix (bug type) 523 604 631 533 679 725

InferFix (+ localization) 53.5 614 644 539 69.6 75.0

© Copyright Microsoft Corporation. All rights reserved.

Extended File-Level Context with eWASH

Problem

Provide as much code context as possible from the buggy file
Model input is limited in tokens, and file may be truncated

eWASH Approach

Allows to fill the model input with as much context as possible
Defines a syntax-based priority system to dynamically choose context

based on available token budget

1. Buggy Method and Class Name

Imports, variables, and method signatures
Method docstrings

Method bodies

W

import logging
import torch

import torch.nn as nn
import torch.nn.functional as F

class ConvNet(nn.Module):

LOGGER = logging.getLogger()

""Basic few layer ConvNet"""|

; n@m_clas;|= 1g|§

def __init_ (self):

i """Define network layers"""l

super().__1init_ ()

self.
self.
.dropoutl = nn.Dropout2d(0.25)
.dropout2
self.
self.

self
self

convl = nn.Conv2d(1, 32, 3, 1)
conv2 = nn.Conv2d(32, 64, 3, 1)

nn.Dropout2d(0.5)
fcl = nn.Linear(9216, 128)
fc2 = nn.Linear(128, self.num_class)

target body
def forward(self, x):
"""Fyaluate Net on

input X" mn

» Priority

Bug type

Extended Context annotation
with eWASH WASH

extended context

Focal methods

Buggy method
with location

NULL_DEREFERENCE

package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;

import com.day.cqg.wcm.api.Page;

import com.day.cq.wcm.api.PageManager;

public class DefineObjectsInjector implements Injector {
private static Designer getDesigner(Object adaptable) {}

private ResourceResolver getResourceResolver(Object adaptable) {
if (adaptable instanceof SlingHttpServletRequest) {
return ((SlingHttpServletRequest)adaptable).getResourceResolver();
¥
if (adaptable instanceof Resource) {
return ((Resource)adaptable).getResourceResolver();
}

return null;

b

private Designer getDesigner(Object adaptable) {
<START_BUG>

return getResourceResolver(adaptable).adaptTo(Designer.class);

markers L e
Adding extended context NPD RL ISV
to the prompt Java C# Java C# Java C#
S Data-A InferFix (localization) 53.5 614 644 539 69.6 75.0

InferFix (+ eWASH) 57.6 65.1 69.1 56.1 75.0 80.0

Enriching context with Bug-Fix Hints

Idea
Find examples on how to fix a similar bug, and provide it to the model

Steps

» Search for similar buggy code in a historical database of bug-fixes
» Select the fixed version of the bug
» Provide the example of the bug-fix to the model

InferredBugs

Fixed Code

© Copyright Microsoft Corporation. All rights reserved.

Enriching context with Bug-Fix Hints

Retriever Model

Bidirectional Transformer Encoder Model that maps a code snippet to an embedding

Trained using contrastive learning objective:
* Minimized distance from positive examples
» Maximize distance from negative examples

Positive Examples -> Bugs of the same type
Negative Examples -> Bugs of different type

Retrieving Steps

1. Generate embedding for given buggy code
2. Compute cosine similarity with the bugs in the db
3. Select the associated fixed code (key-value pair)

Maximize
Minimize T ‘\

00000

T
-

def normalize(a):
ma = np.mean(a)
sa

API seq np.mean

ITrunc ate

Partial code

Q0000 | L] '

E

T _——

ncoder

T T

def normalize(a):
ma = np.mean(a)
sa = np.std(a)
return (a-ma)/sa

-

[Original code]

def standardization(arr):

np.mean np.std

sorted

[[Positive example]

o

[In-batch negatives

[

Transformation]

Enriching context with Bug-Fix Hints

Abstraction

To extract structurally similar fixes and reduce the dependency on identifier naming
we obfuscate code snippets

Process
We parse and analyze the code identifier types and private Designer getDesigner(Object adaptable) {
. ! ' if (resolver != null) {
with placeholder symbols: CLASS_NN, METHOD_NN, return resolver.adaptTo(Designer.class);
and VAR_NN, where NN is a unique number ¥
return null;
+

. 4

private CLASS_1 METHOD_1(CLASS_2 VAR_1) {
CLASS_3 VAR_2 = METHOD_2(VAR 1);
if (VAR 2 != null) {
return VAR_2.METHOD_3(CLASS_1.METHOD_4);

¥

return null;

Enriching context Retrieved
with Bug-Fix Hints

Bug type
annotation

eWASH
extended context

Focal methods

// Structurally similar fix
private CLASS_1 METHOD_1(CLASS_2 VAR_1) {
CLASS_3 VAR_2 = METHOD_2(VAR_1);
if (VAR_2 != null) {
return VAR_2.METHOD_3(CLASS_1.METHOD_4);
}

return null;

}

NULL_DEREFERENCE

package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;

import com.day.cq.wcm.api.Page;

import com.day.cq.wcm.api.PageManager;

public class DefineObjectsInjector implements Injector {
private static Designer getDesigner(Object adaptable) {}

private ResourceResolver getResourceResolver(Object adaptable) {
if (adaptable instanceof SlingHttpServletRequest) {
return ((SlingHttpServletRequest)adaptable).getResourceResolver();
}
if (adaptable instanceof Resource) {
return ((Resource)adaptable).getResourceResolver();
}

return null;

+
Buggy method priva‘;_eml;?séager getDesigner(0Object adaptable) {
with location return getResourceResolver(adaptable).adaptTo(Designer.class);
markers <END_BUG>
ks
Adding bug-fix hints
to the prompt NPD RL ISV
Java C# Java C# Java C#
) Data-Al InferFix (eWASH) 576 651 69.1 561 750 80.0

InferFix (+ retrieved hints) 59.5 66.7 71.2 57.0 774 825

Overall Results

Finetuning Boost
Finetuning on bug dataset
improves performances

Prompt Augmentation

Augmenting the prompt is beneficial:

* Bug type & Location
« Context
* Bug-Fix hints

on top of finetuning

& Data-+Al

®

Approach

NPD

TSV

C#

C#

Demonstration (Codex)
Completion (Codex)
Instruction (Davinci)
Finetuning (Codex)
InferFix

30.1
6.1
22.2
53.1
66.7

16.7
0.0

33.3
70.0
82.5

© Copyright Microsoft Corporation. All rights reserved.

Resource Leak

private static String readResource(final String name)

—

{
final StringBuilder ret = new StringBuilder();

InputStream is = null;
try {
is = UrlRegularExpressions.class.getClasslLoad
— er().getResourceAsStream(name);
final InputStreamReader reader = new
— InputStreamReader(is, ASCII);
int read = 0;
final char[] buf = new char[1024];
do {
read = reader.read(buf, @, buf.length);
if (read > 0) {
ret.append(buf, 0, read);
}
} while (read >= 0);
} catch (final IOException ex) {
throw new RuntimeException(ex);
} finally {
closeQuietly(is);
}

return ret.toString();

private static String readResource(final String name)

=

{
final StringBuilder ret = new StringBuilder();
InputStream is = null;
InputStreamReader reader = null;
try {
is = UrlRegularExpressions.class.getClassload
— er().getResourceAsStream(name);
reader = new InputStreamReader(is, ASCII);
int read = 0;
final char[] buf = new char[1024];
do {
read = reader.read(buf, @, buf.length);
if (read > 0) {
ret.append(buf, 0, read);
}
} while (read >= 0);
} catch (final IOException ex) {
throw new RuntimeException(ex);

} finally {
closeQuietly(is);
closeQuietly(reader);

}

return ret.toString();

-
,/
4
4

Infer Static Analysis

“kind": "ERROR",
"bug_type": "NULL_DEREFERENCE",

"qualifier":
could be null and is dereferenced at line 168.",

"severity": "HIGH",
Localization

Pull Request

"line": 168,
"procedure":
"procedure_start_line": 167,
"file":

"object returned by ‘getResourceResolver(this,adaptable)’

Detection and Classification

"Designer DefineObjectsInjector.getDesigner(Object)",

'src/main/java/com/adobe/acs/commons/models/../DefineObjectsInjector.java"

Context Extraction (eWASH, type annotation)

NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;
import com.day.cq.wcm.api.PageManager;

public class DefineObjectsInjector implements Injector {
private ResourceResolver getResourceResolver(Object adaptable) {}

private Designer getDesigner(Object adaptable) {
<START_BUG>
return getResourceResolver(adaptable).adaptTo(Designer.class);

o gy

Query database
of historic
bugs and fixes

»

<

o B B B

/" InferFix: End-to-End Program Repair with LLMs

-

// Predicted patch
private Designer getDesigner(Object adaptable) {
ResourceResolver resolver = getResourceResolver(adaptable)
if (resolver != null) {
return resolver.adaptTo(Designer.class);

}
return null;

Large Language Model

*

// Structurally similar fix

private CLASS_1 METHOD_1(CLASS_2 VAR_1) {
CLASS_3 VAR_2 = METHOD_2(VAR_1)
if (VAR_2 != null) {

return VAR_2.METHOD_3(CLASS_1.METHOD_4);
N

3
return null;

<END_BUG>
NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors
\ } import com.adobe.granite.xss.XSSAPI;;
\,
~,
e e e e e P P P P P
’——__—.

,,’ N\\\ ,,,
/ . \ / .
I ==a
|' Integrated in the InforF Vo LE
. o ali nferFix |
i Cl Pipeline .
1 1 1
1 1 1
1 1 1
1 1 1
= . o
: Cl Pipe i :
i el i I
I u = ! :
1 ‘H'-'
1 y 1 1
: Build Test Infer P
| L
1

1

| P
1 1 1
1 1 1
| .
1 .
! Main Branch [
\ 7 \
AN / \

N f’, \\x

S ————_

N i -

o

~

- ~ -

N o ———————————————— -

~
~ ,z’ \\.
' * Augmented Prompt :
v/ Augmented Promp \
1 1)
1 I // Structurally similar fix 1
1 I private CLASS_1 METHOD_1(CLASS_2 VAR_1) { 1
1 1 Retri d CLASS_3 VAR_2 = METHOD_2(VAR_1); 1
. 1 i etrieve if (VAR2 != null) { I
’ 1 I similar fix return VAR_2.METHOD_3(CLASS_1.METHOD_4); 1
1 ¥ 1
1 1 return null; 1
I | } I
1
1 1 BUg type NULL_DEREFERENCE :
1 1 annotation
1 1 package com.adobe.acs.commons.models.injectors; I
1 1 import com.adobe.granite.xss.XSSAPI; :
1 import com.day.cq.wcm.api.Page;
: 1 eWASH import com.day.cq.wcm.api.PageManager; 1
1 extended context | ... I
: 1 public class DefineObjectsInjector implements Injector { 1
1
: : private static Designer getDesigner(Object adaptable) {} 1
1
1 : private ResourceResolver getResourceResolver(Object adaptable) { 1
1 I Focal methods if (adaptable instanceof SlingHttpServletRequest) { 1
: I return ((SlingHttpServletRequest)adaptable).getResourceResolver(); 1
1
1 : if (adaptable instanceof Resource) { 1
1 I return ((Resource)adaptable).getResourceResolver(); 1
1
1 1 return null; :
1 :] I
1 n - - N 1
1 private Designer getDesigner(Object adaptable) {
,' \ Buggy method <START_BUG> 1
h Y with location return getResourceResolver(adaptable).adaptTo(Designer.class); I
/ \ markers <END_BUG> II
\ I
s \ i
’ AN ,
-’ ~ -
N i o
o o o e
So Vi \\
N 4 N
N 4 \
° \\ 4 \
on A ; Contacts
Paper on ArXiv o n ‘
P! .
1
I I
1
' 8 '
1
I I
1
I I
I 1
i ! () = I
A - — :
: I —— 1
I | I
I I
1
I I
1
I I
I | . I
|
i 1 Michele Tufano .
|
] .
1 M M |
| Sr. R hS tist
I ! I Researc cientis :
1
i | . . !
i Michele.Tufano@microsoft.com |
I | I
1
! I
1 1
1
7)
\
Y3 7
S N J
’ S ’

How to evaluate LLM capabilities for Code?

© Copyright Microsoft Corporation. All rights reserve:

Human-Eval

Evaluation Harness for Code Generation

Task
Synthesizing programs from docstrings

Evaluation
Check Functional Correctness
by computing tests passing rate

& Data+Al

| 14 Jul 2021

1]

arXiv:2107.03374v2 [cs.LC

Evaluating Large Language Models Trained on Code

Mark Chen”' Jerry Tworek ' Heewoo Jun'' Qiming Yuan®' Henrique Ponde de Oliveira Pinto "'
Jared Kaplan *> Harri Edwards' Yuri Burda' Nicholas Joseph® Greg Brockman' Alex Ray' Raul Puri'
Gretchen Krueger' Michael Petrov' Heidy Khlaaf® Girish Sastry' Pamela Mishkin' Brooke Chan '
Scott Gray' Nick Ryder' Mikhail Pavlov' Alethea Power' Lukasz Kaiser' Mohammad Bavarian'
Clemens Winter ' Philippe Tillet' Felipe Petroski Such' Dave Cummings' Matthias Plappert '
Fotios Chantzis' Elizabeth Barnes' Ariel Herbert-Voss' William Hebgen Guss' Alex Nichol ' Alex Paino '
Nikolas Tezak ' Jie Tang' Igor Babuschkin' Suchir Balaji' Shantanu Jain' William Saunders'
Christopher Hesse' Andrew N. Carr' Jan Leike' Josh Achiam' Vedant Misra' Evan Morikawa '
Alec Radford' Matthew Knight' Miles Brundage' Mira Murati' Katie Mayer' Peter Welinder '
Bob McGrew ' Dario Amodei’ Sam McCandlish® Ilya Sutskever ' Waojciech Zaremba '

Abstract

We introduce Codex, a GPT language model fine-
tuned on publicly available code from GitHub,
and study its Python code-writing capabilities.
A distinct production version of Codex powers
GitHub Copilot. On HumanEval, a new evalua-
tion set we release to measure functional correct-
ness for synthesizing programs from docstrings,
our model solves 28.8% of the problems, while
GPT-3 solves 0% and GPT-J solves 11.4%. Fur-
thermore, we find that repeated sampling from the
model is a surprisingly effective strategy for pro-
ducing working solutions to difficult prompts. Us-
ing this method, we solve 70.2% of our problems
with 100 samples per problem. Careful investiga-
tion of our model reveals its limitations, including
difficulty with docstrings describing long chains
of operations and with binding operations to vari-
ables. Finally, we discuss the potential broader
impacts of deploying powerful code generation
technologies, covering safety, security, and eco-
nomics.

“Equal contribution

'OpenAL San Francisco, California, USA.

*Anthropic Al San Francisco, California, USA. Work per-
formed while at OpenAl

Zipline, South San Francisco, California, USA. Work per-
formed while at OpenAl

Correspondence to: Mark Chen < mark@openai.com>,
Jerry Tworek <jt@openaicom>, Heewoo Jun <hee-
woo@ openai.com>, Qiming Yuan <qgiming @openai.com>.

1. Introduction

Scalable sequence prediction models (Graves, 2014;
Vaswani et al., 2017; Child et al., 2019) have become a
general-purpose method for generation and representation
learning in many domains, including natural language pro-
cessing (Mikolov et al., 2013; Sutskever et al., 2014; Dai &
Le, 2015; Peters et al., 2018: Radford et al., 2018; Devlin
et al., 2018), computer vision (Van Qord et al., 2016; Menick
& Kalchbrenner, 2018:; Chen et al., 2020; Bao et al., 2021),
audio and speech processing (Oord et al., 2016; 2018; Dhari-
wal et al., 2020; Baevski et al., 2020), biology (Alley et al.,
2019; Rives et al., 2021), and even across multiple modali-
ties (Das et al., 2017; Lu et al., 2019; Ramesh et al., 2021;
Zellers et al.. 2021). More recently, language models have
also fueled progress towards the longstanding challenge
of program synthesis (Simon, 1963; Manna & Waldinger,
1971), spurred by the presence of code in large datasets
(Husain et al., 2019; Gao et al., 2020) and the resulting pro-
gramming capabilities of language models trained on these
datasets (Wang & Komatsuzaki, 2021). Popular language
modeling objectives like masked language modeling (Devlin
et al., 2018) and span prediction (Raffel et al., 2020) have
also been adapted to train their programming counterparts
CodeBERT (Feng et al., 2020) and PyMTS5 (Clement et al.,
2020).

Similarly, our early investigation of GPT-3 (Brown et al..
2020) revealed that it could generate simple programs from
Python docstrings. While rudimentary, this capability was
exciting because GPT-3 was not explicitly trained for code
generation. Given the considerable success of large lan-
guage models in other modalities and the abundance of
publicly available code, we hypothesized that a specialized
GPT model, called Codex, could excel at a variety of coding
tasks. This paper describes several early Codex models,
whose descendants power GitHub Copilot and the Codex
maodels in the OpenAl APL

Coverage-Eval

Evaluation Harness for Coverage Prediction

Task

Predicting code coverage for a given:
* Method

» Test Case

Goal
Evaluate LLM capabilities to understand
code execution in terms of coverage

& Data+Al

vl [cs.SE] 25 Jul 2023

o

8

[ag!
(a8

arxiv:2307.1

Predicting Code Coverage without Execution

Michele Tufano, Shubham Chandel, Anisha Agarwal, Neel Sundaresan, Colin Clement
Microsoft
Redmond, WA, USA
{mitufano, schandel, anisagarwal, neels, coclement}@microsoft.com

Abstract

Code coverage is a widely used metric for quan-
tifying the extent to which program elements,
such as statements or branches, are executed
during testing. Calculating code coverage is
resource-intensive, requiring code building and
execution with additional overhead for the in-
strumentation. Furthermore, computing cover-
age of any snippet of code requires the whole
program context. Using Machine Learning to
amortize this expensive process could lower
the cost of code coverage by requiring only
the source code context, and the task of code
coverage prediction can be a novel benchmark
for judging the ability of models to understand
code. We propose a novel benchmark task
called Code Coverage Prediction for Large Lan-
guage Models (LLMs). We formalize this task
to evaluate the capability of LLMs in under-
standing code execution by determining which
lines of a method are executed by a given test
case and inputs. We curate and release a dataset
we call COVERAGEEVAL by executing tests
and code from the HumanEval dataset and col-
lecting code coverage information. We report
the performance of four state-of-the-art LLMs
used for code-related tasks, including OpenAl's
GPT-4 and GPT-3.5-Turbo, Google’s BARD,
and Anthropic’s Claude, on the Code Coverage
Prediction task. Finally, we argue that code cov-
erage as a metric and pre-training data source
are valuable for overall LLM performance on
software engineering tasks.

1 Introduction

Software testing is an essential part of the soft-
ware life-cycle which aims at detecting bugs in a
program prior to shipping new versions. Code cov-
erage is a widely used metric which estimates the
quality of testing, providing some confidence that
the system will operate conforming to the specified

Focal Method {m}

public String foo(int x){
if(x == 0){
return “zero”;
3 else if(x = 8){
return “positive”;
} else {
return “negative”;
)

return "impossible”;}

Test Case {t}

public void testFoo() {
String res = foo(2);
Assert.isEqual("positive”, res);}

Coverage-Annotated Method {cov(m,t)}

public String foa(int x){
if(x = @){
return “zero®;
} else if(x > 2){

return “positive”;

=
>
>
>
} else {
return “negative";
||

¥

return “inpossible®;}

Figure 1: Given a focal method m, that is a method
under test, and a test case ¢ covering that method, the
code coverage obtained by ¢ on m can be represented
as the coverage-annotated method cov(im, t), where >
represents executed statements, ! represents statements
not executed, and - represents unreachable code.

For example, coverage is one of the metrics con-
sidered by the Federal Aviation Administration
(FAA) for safety certification of avionic equipment,
as documented in DO-178B (Johnson, 1998) and
DO-178C (Rierson, 2017). Test coverage is also a
requirement in the automotive safety standard ISO
26262 Road Vehicles - Functional Safety (Palin
etal, 2011).

Given a focal method m, which is executed di-
rectly by the test case f, code coverage measures
the number of statements that have been executed

Coverage-Eval

Evaluation Harness for Coverage Prediction

What is Coverage?

Important metric for quantifying the number of
statements and branches executed during
testing

How it works?

Requires instrumenting the code, building and
monitoring its execution

Potential Benefits

» LLMs that performs well on this task may
generate better code.

* LLMs could replace/improve the process of
code coverage computation

& Data+Al

Focal Method {m}

public String foo(int x){

if(x == 0){
return "zero”;
} else if(x > 0){
return "positive”;
} else {
return "negative”;

}

return "impossible”;}

Test Case {t}

public void testFoo() {

String res = foo(2);
Assert.isEqual("positive”, res);}

Coverage-Annotated Method {cov(m,t)}

>
>
>
>
Il

public String foo(int x){
if(x == 0){
return "zero”;
} else if(x > 0){
return "positive”;
} else {

return "negative”;

}

return "impossible”;}

C Ove ra g e - Eva I 0 microsoft / coverage-eval

Evaluation Harness for Coverage Prediction

Code lssues Pull requests

o coverage-eval

Dataset Creation Steps

1. Start with Human-Eval dataset with
problems, code solutions, and tests

2. Spit each test case in a single-assert test
case (each test now covers less
statements/branches) Problems Solutions Tests

Coverage Symbols

Executed (>) Missed (!) Unreachable (-)

3. Collect coverage information by running

coverage.py 158 164 1160 20037 1734 0
4. Parse and organize the dataset Table 1: COVERAGEEVAL statistics.
?S D a t a * Al © Copyright Microsoft Corporation. All rights reserved.

Coverage-Eval

Evaluation Harness for Coverage Prediction

Prompting

» Start with a System NL prompt
explaining the task
* Mimic a terminal environment
» Cat code to show it
* Run coverage computation
* Show zero, one, multiple examples

* Show current focal method and test

& Data+Al

System NL Prompt

You are a terminal. Instruction:
When user runs:
coverage run -m pytest code.py

then you'll cat the file code.py,
with each line starting with either of the two symbols below:

> if the line is executed
! is the line is not executed

Example output:
> linel
I Tine2
> line3

> linen

You job is to figure out which line will be executed
given different test cases.

Examples

(anaconda3-2020.11) | cat code.py
def split_words(txt):

(anaconda3-2020.11) | cat test.py

def test():
assert split_words("Hello,world!"”) == ["Hello", "world!"]
assert True

(anaconda3-2020.11) | coverage run -m pytest test.py
> def split_words(txt):

> if " " in txt:

. return txt.split()

> elif "," in txt:

>

return txt.replace(',’',' '").split()

. else:

Coverage-Eval

Evaluation Harness for Coverage Prediction

Leaderboard

* GPT-4 obtains the best results
» All models struggle on branches

* Challenging task for LLMs

Future Work

* Open models like StarCoder or Llama2
* Pretrain model on this task

* Investigate benefits on code generation

) Data+Al

L5

zero-shot one-shot multi-shot
Model
Match Stmt Branch Match Stmt Branch Match Stmt Branch
OpenAl GPT-4 (gpt-4) 2575 8447 20.16 2285 90.71 22.65 30.04 90.5 22.5
OpenAl GPT-3.5 (gpt-3.5-turbo) 0 39.87 8.33 8.17 76.53 17.17 11.03 82.29 17.9
Google BARD (text-bison-001) 0 81.27 17.21 1.87 8693 19.63 21.56 8566 20.52
Anthropic Claude (claude-1.3) 3.9 84.47 20.07 483 8321 19.16 6.88 55.7 12.23

Table 2: LLMs performances on the Code Coverage Prediction Task. The table reports the percentages of predicted
coverage sequences that match the ground truth (Match), the percentage of correct coverage symbols for statements
(Stmt), and specifically for branches (Branch). Evaluation performed for zero-shot, one-shot, and multi-shot.

© Copyright Microsoft Corporation. All rights reserved.

How to evaluate LLM capabilities for Code?

© Copyright Microsoft Corporation. All rights reserve:

How to evaluate LLM capabilities for Code?

What are other capabilities to evaluate?

© Copyright Microsoft Corporation. All rights reserve:

Join at menti.com use code 2738 6756 A" Mentimeter

LLM capabilities for CEE@

Waiting for responses

GOTO
menti.com

ENTER THE CODE

T» 27386756

Pe

= Microsoft

Questions?

Michele Tufano
Sr. Research Scientist
Michele. Tufano@microsoft.com

[
ﬂ‘\ +
% rd Data AI © Copyright Microsoft Corporation. All rights reserved.

	Default Section
	Slide 1: AI for SE In the era of ChatGPT
	Slide 4: About me
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: AI for SE ~ (mostly LLMs for Code)
	Slide 11: AI for SE ~ (mostly LLMs for Code)
	Slide 12: Large Language Models
	Slide 13: Large Language Models
	Slide 14: Efficient finetuning for LLMs
	Slide 15: LoRA: Low-Rank Adaption of LLMs
	Slide 17: How can we train many personalized models?
	Slide 18: Freeze part of the model 🥶 Let other parts change Finetune a prefix
	Slide 19: Reinforcement Learning from Human Feedback
	Slide 20: ChatGPT!
	Slide 21: ChatGPT!
	Slide 22: ChatGPT!
	Slide 23: How can I use RLHF?
	Slide 24: How can I use RLHF?
	Slide 25: How can I use RLHF?
	Slide 26: How can I use RLHF?
	Slide 27: Reinforcement Learning (RL) terminology
	Slide 28: Reinforcement Learning (RL) part of RLHF
	Slide 29
	Slide 30: Reward model training
	Slide 31: Open-Source tools for RLHF
	Slide 32: November 30 2022
	Slide 33: Boom, ChatGPT is out! And just like that, scientists turned into Prompt Engineers.
	Slide 34: Alright, for real though, prompting is cool.
	Slide 35: Prompting
	Slide 36: Prompting
	Slide 37: Input-Output Prompting
	Slide 38: Input-Output Prompting
	Slide 39: How to select examples?
	Slide 40: Input-Output Prompting
	Slide 41: Input-Output Prompting
	Slide 42: Chain of Thought Prompting (CoT)
	Slide 43: Chain of Thought Prompting (CoT)
	Slide 44: Tree of Thoughts Prompting (ToT)
	Slide 45: Ok, but what about the SE part?
	Slide 46: Ok, but what about the SE part?
	Slide 47: Design a 3-steps CoT or ToT for Performance Bug Resolution
	Slide 48
	Slide 49: InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts
	Slide 50: InferFix: End-to-End Program Repair
	Slide 52: Overview - InferFix: End-to-End Program Repair
	Slide 53: Infer
	Slide 54: InferredBugs Dataset
	Slide 56: Large Language Models
	Slide 59: LLM Prompting Strategies
	Slide 60: InferFix Building Stages
	Slide 61: Prompting Strategies vs Finetuning
	Slide 62: Bug Type
	Slide 63: Bug Localization
	Slide 64: Extended File-Level Context with eWASH
	Slide 65: Extended Context with eWASH
	Slide 66: Enriching context with Bug-Fix Hints
	Slide 67: Enriching context with Bug-Fix Hints
	Slide 68: Enriching context with Bug-Fix Hints
	Slide 69: Enriching context with Bug-Fix Hints
	Slide 70: Overall Results
	Slide 72: Resource Leak
	Slide 73
	Slide 74: How to evaluate LLM capabilities for Code?
	Slide 75: Human-Eval
	Slide 76: Coverage-Eval
	Slide 77: Coverage-Eval
	Slide 78: Coverage-Eval
	Slide 79: Coverage-Eval
	Slide 80: Coverage-Eval
	Slide 81: How to evaluate LLM capabilities for Code?
	Slide 82: How to evaluate LLM capabilities for Code?
	Slide 83
	Slide 84: Questions?
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 94

