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ABSTRACT ACM Reference Format:

The most popular code review tools (e.g., Gerrit and GitHub) present
the files to review sorted in alphabetical order. Could this choice
or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.
First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
controlling for possible confounding factors: e.g., the presence of
discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are
assigned to one of two treatments in which the position of the
defective files is switched. For one type of defect, participants are
not affected by its file’s position; for the other, they have 64% lower
odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews’ outcome; we discuss
these results and implications for tool design and code review.
Preprint: https://doi.org/10.48550/arXiv.2208.04259
Data and Materials: https://doi.org/10.5281/zenodo.6901285
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1 INTRODUCTION

Code review is a popular software engineering practice where de-
velopers manually inspect the code written by a peer [7, 40]. Code
review aims to find defects [11], improve software quality [3, 12],
and transfer knowledge [7, 48]. Over the years, code review has
evolved from a formal strictly-regulated process [22] into a less
strict practice. Contemporary code reviewing is informal, asynchro-
nous, change-based, and supported by tools [9, 10, 46, 48].

The tools used to conduct code reviews share many similari-
ties [11]. In particular, the vast majority of tools (including the
popular Gerrit [28] and GitHub [29]) present the changes to review
as a list/sequence of diff hunks [25] grouped by the file they belong
to. Tools sort these files alphabetically, therefore the changes to
a file named org/Controller. java are always presented before
those to a file named org/Model . java. Could this choice or, more
generally, the relative position in which a file is presented influence
the outcome of code review?

This hypothesis seems to be supported by at least two factors.
First, most developers tend to start their reviews in the order pre-
sented by the review tool [12]. Second, code review is a cognitively
demanding task [8] whose outcome might be influenced by cog-
nitive factors [42, 51] also related to the position of the file. For
example, developers may be influenced by attention decrement (a
decrease in attention when exposed to a list of elements [6]) or may
deplete their working memory capacity (the memory for short-term
storage during ongoing tasks [61]) near the end of longer reviews.

In this paper, we set to investigate this hypothesis. We do this
by triangulating complementary evidence in a two-step study.

In the first step, we focus on the relation between file position and
reviewers’ activity. We collect and analyze 219,476 Pull Requests
(PRs) from 138 GitHub open-source Java projects and investigate
whether the position in which a file is presented in a PR is associated
with the number of comments the file receives. In fact, the number
of comments can be used to approximate reviewers’ effectiveness
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172 177 {
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extremely widespread

« About 70% of developers
spend 2 to 8 hours a week
reviewing code.

[Stack Overflow Dev Survey 2019]

« In 2021, 170M pull requests
have been merged in GitHub.

[The 2021 State of the Octoverse]

reviewers

« Most (possibly all) code
changes at Google, Meta, and
Microsoft are reviewed.
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27 + * @param context The extension context.
28 + % @returns An instance of credentials.
29 + */
21 30 static async initialize(context: vscode.ExtensionContext): P

How would you test S e a0
this hypothesis?

e — -

vy @ 25 EEEmm extensions/ql-vscode/src/query-history.ts @

x @@ -36,6 +36,8 @@ import { QueryStatus } from './query-status'
36 36 import { slurpQueryHistory, splatQueryHistory } from './query-
37 37 import
38 38 import

39 + import

as fs from 'fs—-extra';
CliVersionConstraint } from './cli';
Credentials } from './authentication';

R W 2

40 + import cancelRemoteDuerv ¥ from ' /remote—aiieriec/ah—-actionc
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o “

o )

O Add bot filter, co-author logic b X + v

~ > C O B &2 https://github.com/JetBrains-Research/bus-factor-explorer/r ©® v & 0

}~ Merged

Q. Filter changed files

[ GitHubClient.kt

v [ task

[) ComputeBusFactorJob.kt

Add bot filter, co-author logic #1
E] Changes from all commits ¥

[

v [ src/main/kotlin/org/jetbrains/rese...
v [ calculation
[ BusFactor.kt
[ BusFactorComputationCon...
v [ mappers
[ UserMapper.kt
v [ processors
[ CommitProcessor.kt
v [ service
v [ github

0/ 6 files viewed

Review in codespace Review changes ~

[Jviewed L[] -

File filter v Conversations ~ @3 v

...main/kotlin/org/jetbrains/research/ictl/riskypatterns/servic.. LD

va Vi LUY s LITTVL T CPYUO LLUIL YU LUTICU Yy

63 63 executionEnvironment. logFile. log(repositoryCloned)
64 64

65 + val bots = gitHubClient. loadBots(payload.owner, payload.repo)
egorklimov marked this conversation as resolved. -3+ Hide resolved

ﬁ egorklimov on May 25 Collaborator  ***

Remove it from the time measurement scope, please.

®

&)  Reply...

65 66 val started = System.currentTimeMillis()

66 - val busFactor = BusFactor(File(executionEnvironment.gitDir,
".git"))

67 + val busFactor = BusFactor(File(executionEnvironment.gitDir,

".git"), bots)

67 68 val tree = busFactor.calculate(payload.fullName)

68 69 val ended = System.currentTimeMillis()

69 70

e

C) Pull requests - microsoft/vscode X +

ations of the same set of scopes v
Approved 2 September 2023

ractive window is open v
ed CP September 2023

settings Ul v
ved CP September 2023

escriptions v
ved CP September 2023

scription v
ved CP September 2023

s cache for improved performance X

aft

tension v
Approved CP September 2023

ttings Ul v
ved CP September 2023

Dg message v git
ved CP September 2023

king v
proved CP September 2023

(1]
(1]
(1]
%

03




an observational study

Comments as proxy for reviewers' activity

What (else) could affect the
number of comments on files
(i.e., confounding factors)?

« change size

. test files

« number of participants
» bots

« threads
« 7

- big data matters

M. D'Ambros
CodeLounge @Sl

O Pull requests - microsoft/vscode X +

ps://github.com/microsoft/vscode/pulls?page=3&q=is%:

O 8 &=

htt
—

I~ Use SequencerByKey to sequence operations of the same set of scopes v
#192638 by TylerLeonhardt was merged 4 days ago - Approved CP September 2023

I~ only show IW focus command if an interactive window is open v/
#192637 by amunger was merged yesterday - Approved Cl'D September 2023

¥~ fix: markdown for more descriptions in settings Ul v/
#192636 by joyceerhl was merged 4 days ago - Approved CP September 2023

I~ fix: use markdown in terminal setting descriptions v
#192634 by joyceerhl was merged 4 days ago - Approved CP September 2023

£~ fix: use markdown for HTML setting description v/
#192633 by joyceerhl was merged 2 days ago - Approved CP September 2023

I3 feature: skip verifying builtin extensions cache for improved performance X
triage-needed

#192631 by SimonSiefke was closed 9 hours ago - Draft

I~ Log a lot more of the Microsoft Auth extension v
#192629 by TylerLeonhardt was merged 4 days ago - Approved C:D September 2023

¥~ fix: render setting reference links in settings Ul v/
#192628 by joyceerhl was merged 4 days ago - Approved CP September 2023

I~ Git - remove extra character from the log message v  git
#192622 by Iszomoru was merged 4 days ago - Approved CP September 2023

¥~ cli: fix delegated http requests not working v
#192620 by connor4312 was merged 4 days ago - Approved C;D September 2023

Work il 83 ¥

& & & B @

03
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an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K pull requests
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

1500

1000

500

cumulative number of
review comments
by file position

pull requests with 5 files
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Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

pull requests with 5 files

pull requests with 2 files

7'000 1'500

1000
3'500

500

0
1st 2nd 1st 2nd 3rd Ath 5th

file position file position

cumulative number of
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by file position

pull requests with 7 files pull requests with 10 files

800 500
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100
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Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

pull requests with 5 files

pull requests with 2 files

7'000 1'500

1000
3'500

500

0
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file position file position

cumulative number of
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pull requests with 2 files

7'000

an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects

3'500

pull requests with 5 files

1'500

1000

500

0

(Java-based with > 1k stars)... o W e
what are the 1ulative number of
. .. e wwiew comments
and saw this. limitations of an by file position

observational study? .

800

1) where is the error?

2) does it hold with statistics?

0

1st 2nd 3rd 4th 5th 6th 7th

file position

pull requests with 10 files

500
400
300
200

100

0]

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

file position



a controlled experiment

a.k.a. the gold standard for causal inference

main ingredients
¢« randomization
« control

e manipulation

What would be the
perfect experiment?




a controlled experiment

a.k.a. the gold standard for causal inference

main ingredients lessons learned

« randomization - the perfect experiment is
often infeasible, but it's a good
reference point

e control
- manipulation |
 it's ok to trade-off some
realism to increase the visibility
of the effect

« more participants is better
than better participants



a controlled experiment
design




a controlled experiment
design

N
a.jave

b.java

c.java

d.java

e.jJava
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a controlled experiment

design

Random aSS|gnment to a treatment

aspects to consider . .
« experiment platform

{FI2F|3FI 4} {File 4, File 3, File 2}

e C h dn g es \ Code review task
bugs

Post-review
questionnaire

- confounding factors
participants
» consent
» recruiting

Demographics Closing page



-l'@/.'.)o
o/ *s

Welcome Page
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design

Random aSS|gnment to a treatment

e Il II
|
e experiment platform

{File 2, File 3, File 4} {File 4, File 3, File 2}

"
« Objects -
¢ ChangeS Coderewewtask
bugs

Post-review
questionnaire

- confounding factors
« participants

 consent

* recruiting

D. Spadini

—
https://aithub.com/ishepard/CREX erlment N Demographios  Closing page
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design

aspects to consider
« experiment platform
e objects

- changes

» bugs
- confounding factors
« participants

» consent

» recruiting



a controlled experiment
design

aspects to consider

a.java

« experiment platform

« Objects

b.java

 changes

¢ bugS c.java

- confounding factors
d.java

« participants

 consent

e.java

» recruiting



a controlled experiment
design

aspects to consider —
. a.jav

« experiment platform ‘
« Objects |
b.java

- changes

¢ bugs c.java

- confounding factors

d.java

« participants

 consent

» recruiting
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® switch (destinationAddress.getCountry()) {
es I g n case "USA":

shippingCost = shippingCost * 1.2;
break;

case "Canada":
shippingCost = shippingCost * 1.18;
break;

case "Mexico":

aspects to consider

o shippingCost = shippingCost * 1.35;
- experiment platform

experimen daltor —

shippingCost = shippingCost * 1.27;
o (D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,
P O bJ e CtS the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied.
: default:
b'Java shippingCost = shippingCost x 2;
| }
® C h a n g eS | return shippingCost;

YES S
* Returns the discount rate based on the membership level of the
® bugs C-java customer.
* Customers at level 1 do not receive any discount.
* Customers at level 2 to 4 receive a 10% discount.
* Customers from level 5 included receive a 25% discount.

o Confou nd i ng fa Cto rS * @param membershipLevel - the level of membership of the customer

* @return the discount rate applied to the customer
. */
d-Java public double getSaleDiscountRate(int membershipLevel){

o pa rtiCi pa ntS double discountRate = 0;

if(membershipLevel > 2 && membershipLevel < 5) {

(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

 consent

discountRate = 0.1;

}

if (membershipLevel >= 5) {
discountRate = 0.25;

» recruiting

}

return discountRate;




a controlled experiment
design

aspects to consider
« experiment platform
e objects

- changes

» bugs
- confounding factors
« participants

» consent

» recruiting

finding the right objects is an art...

you need to pilot your experiment!

15 participants (using RITE)
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AFFINITY DIAGRAMMING
ARTIFACT ANALYSIS
AUTOMATED REMOTE RESEARCH
BEHAVIORAL MAPPING
BODYSTORMING

BRAINSTORM GRAPHIC ORGANIZERS
BUSINESS ORIGAMI

CARD SORTING

CASE STUDIES

COGNITIVE MAPPING
COGNITIVE WALKTHROUGH
COLLAGE

COMPETITIVE TESTING
CONCEPT MAPPING

CONTENT ANALYSIS

CONTENT INVENTORY & AUDIT
CONTEXTUAL DESIGN
CONTEXTUAL INQUIRY
CREATIVE TOOLKITS

CRITICAL INCIDENT TECHNIQUE
CROWDSOURCING

CULTURAL PROBES

CUSTOMER EXPERIENCE AUDIT
DESIGN CHARETTE

DESIGN ETHNOGRAPHY

DESIGN WORKSHOPS
DESIRABILITY TESTING

DIARY STUDIES

DIRECTED STORYTELLING
ELITO METHOD

ERGONOMIC ANALYSIS
EVALUATIVE RESEARCH
EVIDENCE-BASED DESIGN
EXPERIENCE PROTOTYPING
EXPERIENCE SAMPLING METHOD
EXPERIMENTS

EXPLORATORY RESEARCH

EYETRACKING

FLEXIBLE MODELING
FLY-ON-THE-WALL OBSERVATION
FOCUS GROUPS

GENERATIVE RESEARCH
GRAFFITI WALLS

HEURISTIC EVALUATION

IMAGE BOARDS

INTERVIEWS

KJ TECHNIQUE

KANO ANALYSIS

KEY PERFORMANCE INDICATORS
LADDERING

LITERATURE REVIEWS

THE LOVE LETTER & THE BREAKUP LETTER
MENTAL MODEL DIAGRAMS
MIND MAPPING

OBSERVATION

PARALLEL PROTOTYPING
PARTICIPANT OBSERVATION
PARTICIPATORY ACTION RESEARCH
PARTICIPATORY DESIGN
PERSONAL INVENTORIES
PERSONAS

PHOTO STUDIES

PICTURE CARDS

PROTOTYPING

RITE

Rapid Iterative Testing & Evaluation

Universal Methods
of Design

Bella Martin
Bruce Hanington

—
~

100 Ways to Research Complex
Problems, Develop Innovative Ideas,
and Design Effective Solutions

.LUOd)IOOH

TEST O

Test O is a dry run. After you
make any necessary changes,
you set your counter for
5 successful, sequential tests.

TEST 3
* 'i|
Test 3 also fails. After fixing the

issues, you reset your counter for
5 more successful tests.

Test 6 fails. After fixing the
issues, you reset your counter for
5 more successful tests.

Test 9 succeeds. You need
2 more successful tests.

AN EXAMPLE TEST CYCLE USING THE RITE METHOD?

TEST ] TEST 2
i

Test 2 fails. After fixing the
issues, you reset your counter for
5 more successful tests.

Test 1 succeeds. You need
4 more successful tests.

TEST 4 TEST 5

il il

Test 5 succeeds. You need
3 more successful tests.

Test 4 succeeds. You need
4 more successful tests.

Test 8 succeeds. You need
3 more successful tests.

Test 7 succeeds. You need
4 more successful tests.

Test 10 succeeds. You need Test 11 succeeds.
1 more successful test. The design succeeds!

Totals: 11 participants
4 revised prototypes
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shippingCost
break;

case "Canada":
shippingCost = shippingCost * 1.18;
break;

case "Mexico":
shippingCost = shippingCost * 1.35;
break;

case "UK":
shippingCost = shippingCost * 1.27;

Ig Break defect: Here a break statement is missing. In this way, when the country is UK,
fill fall through the default case and a wrong tax of 1.27 * 2 will be applied.

+ objects how do we know if =

shippingCost = shippingCost * 2;
}

+ changes they found the bug?

—— =aneturns the discount rate based on the membership level of the
o bugs C.java customer.

* Customers at level 1 do not receive any discount.
Customers at level 2 to 4 receive a 10% discount.
Customers from level 5 included receive a 25% discount.
@param membershiplLevel - the level of membership of the customer
@return the discount rate applied to the customer

shippingCost * 1.2;

aspects to consider

« experiment platform

%

%

X

- confounding factors

X

. J
d-Java public double getSaleDiscountRate(int membershipLevel){

°® pa rtiCi pa ntS double discountRate = 0;

if (membershipLevel > 2 && membershipLevel < 5) {

(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

 consent

discountRate = 0.1;

}

if (membershipLevel >= 5) {
discountRate = 0.25;

» recruiting

}

return discountRate;




a controlled experiment
design

aspects to consider

« experiment platform

+ objects What could be
» changes confounding factors?

» bugs
« confounding factors
« participants

» consent

» recruiting
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design
aspects to consider confounding factors we considered
- experiment platform « time
» Objects  INnterruptions
- changes

« practice

¢ bugs :
J « experience

« confounding factors .
« education level
« participants
« consent

e recruiting
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experiment platform
objects

- changes

» bugs
confounding factors
participants

» consent

» recruiting
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aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

e consent

» recruiting
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aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

How many

participants do
we heed?




a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

How many
participants do

we need?
o compute it with Power Analysis

» yOou need some ideas of what
effect to expect

 find more info in this amazing

book: https://lakens.github.io/
statistical inferences/

» go beyond the value you found



https://lakens.github.io/statistical_inferences/
https://lakens.github.io/statistical_inferences/
https://lakens.github.io/statistical_inferences/

a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

how to recruit participants
« personal network
« professional network

« social networks (X, LinkedIn, ...)
e reddit

be nice & offer donations if you can
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data analysis
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data analysis

what to do
. filter out non-serious participants
 use the right statistics

» read Dr. Laken's book!

« conduct robustness testing
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what to do
. filter out non-serious participants
» use the right statistics

» read Dr. Laken's book!

« conduct robustness testing
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data analysis

what to do What cou{d be
. . . potential
+ filter out non-serious participants :
biases?

 use the right statistics - —
« read Dr. Laken's book!

- conduct robustness testing
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data analysis

what to do potential problems we ruled out:
. filter out non-serious participants » participants’ groups are not
homogeneous

 use the right statistics
» one defect might influence

- read Dr. Laken's book! e Y
participants in finding the other

- conduct robustness testing o
» the defects are too easy/difficult

« a low number of participants



a controlled experiment
results




switch (destinationAddress.getCountry()) { /%%
case "USA": * Returns the discount rate based on the membership level of the
— s customer.
shippingCost = shippingCost * 1.2; * Customers at level 1 do not receive any discount.
break; * Customers at level 2 to 4 receive a 10% discount.
case "Canada": * Customers from level 5 included receive a 25% discount.
shippingCost = shippingCost * 1.18; * @param member;hipLevel - the lgvel of membership of the customer
break; x/@return the discount rate applied to the customer
" - ",
| GaSC f?eXJ..co = . . public double getSaleDiscountRate(int membershipLevel){
. shippingCost = shippingCost * 1.35; double discountRate = 0;
break; if(membershipLevel > 2 && membershiplLevel < 5) {
case "UK": (D cC: Corner Case defect: Here the if statement is missing a check for the condition where
shippingCost = shippingCost x 1.27; Icustlomer.r:w:an;ber:shllzLevell== 2.19;czrdmg t(: the Javadoc of the function, customers with membership
— = = - - evel equal to 2 should receive a 10% discoun
(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK, LG & (0
the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied. }
default: if(merrlbershipLevel >= 5) {
shippingCost = shippingCost * 2; y discountRate = 8.25;
} return discountRate;
u return shippingCost; }

b.java

c.java

participants

d.java




switch (destinationAddress.getCountry()) { /%%

case "USA": * Returns the discount rate based on the membership level of the
. . . . customer.

shippingCost = shippingCost * 1.2; * Customers at level 1 do not receive any discount.
break; * Customers at level 2 to 4 receive a 10% discount.

case "Canada": * Customers from level 5 included receive a 25% discount.
shippingCost - shippingCost * 1.18; * @param membershipLevel - the level of membership of the customer
break: * @return the discount rate applied to the customer

’
*/
" 1 ",
| case "Mexico": public double getSaleDiscountRate(int membershipLevel){

shippingCost = shippingCost * 1.35; double discountRate = 0;

break; if(membershipLevel > 2 && membershipLevel < 5) {
case "UK": (D cc: Corner Case defect: Here the if statement is missing a check for the condition where
shippingCost = shippingCost % 1.27; customer.membershlpLeveIl== 2. Accordmg to the Javadoc of the function, customers with membership
— - — - - level equal to 2 should receive a 10% discount
(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,

discountRate = 0.1;

the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied. }

default: if(membershipLevel >= 5) {
discountRate = 0.25;

shippingCost = shippingCost * 2; y
} return discountRate;
I return shippingCost; }

e.jave

b.java d.java

c.java c.java

participants

d.java b.java

e.jJava a.jave



results

participants

a controlled experiment

switch (destinationAddress.getCountry()) {
case "USA":
shippingCost
break;
case "Canada":
shippingCost
break;
case "Mexico":
shippingCost
break;
case "UK":
shippingCost = shippingCost * 1.27;

shippingCost * 1.2;

shippingCost * 1.18;

shippingCost * 1.35;

(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,
the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied.

default:
shippingCost = shippingCost * 2;
}

return shippingCost;

same likelihood of
finding the bug
(42%)




a controlled experiment
results 175% more likely

to find the bug

/%%

* Returns the discount rate based on the membership level of the
customer.

* Customers at level 1 do not receive any discount.
Customers at level 2 to 4 receive a 10% discount.
Customers from level 5 included receive a 25% discount.
@param membershipLevel - the level of membership of the customer
@return the discount rate applied to the customer

*

*

*

%

*/
public double getSaleDiscountRate(int membershiplLevel){
double discountRate = 0;
if(membershipLevel > 2 && membershipLevel < 5) {
(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

discountRate = 0.1;

}
if(membershipLevel >= 5) {
discountRate = 0.25;

}

return discountRate;

participants
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sharing data & materials




an empirical study

sharing data & materials

what to use
e arxiv (pre-print)
« zenodo (data & materials)
e github
 yes, to maintain your tools!

» but do not use for archiving

ABSTRACT

The most popular code review tools (e.g., Gerrit and GitHub) present
the files to review sorted in alphabetical order. Could this choice
or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.

First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
controlling for possible confounding factors: e.g., the presence of
discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are
assigned to one of two treatments in which the position of the
defective files is switched. For one type of defect, participants are
not affected by its file’s position; for the other, they have 64% lower
odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews  outcome; we discuss
these re and imnlications for tool decion and code i

/ Preprint: https://doi.org/10.48550/arXiv.2208.04259
\Data and Materials: https://doi.org/10.5281/zenodo.6901285
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thank you to all co-authors
[ESEC/FSE 2023] First Come First Served: The Impact of File Position on Code Review ¥

Enrico Fregnan, Larissa Braz, Marco D'Ambros, Gul Calikli, Alberto Bacchell

[ICSE 2022] Less is More: Supporting Developers in Vulnerability Detection during Code Review
Larissa Braz, Christian Aeberhard, Gul Calikli, Alberto Bacchelli

[ICSE 2021] Why Don’t Developers Detect Improper InputValidation?'; DROP TABLE Papers; -- ¥
Larissa Braz, Enrico Fregnan, Gul Calikli, Alberto Bacchelli

[CHI2020] Ul Dark Patterns and Where to Find Them: A Study on Mobile Applications and User Perception

Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio Palomba, Alberto Bacchelli

[ICSE 2020] Primers or Reminders? The Effects of Existing Review Comments on Code Review
Davide Spadini, Gul Calikli, Alberto Bacchelli

[ICSE 2019] Test-Driven Code Review: An Empirical Study
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D. Spadini F. Palomba T. Baum S. Hanenberg M. Bruntink L. Di Geronimo G. Calikli L. Braz E. Fregnan C. Aeberhard M. D'Ambros
zest zest U. Hannover U. Duisburg-Essen SIG zest zest zest zest zest CodelLounge@Si




Dissecting Empirical Research in Software Engineering

"The quality of this paper is such \ . X e :
oo that | would add it to the list of The Dual Nature C e [ | code review e —

First Come First Served:

o 'I;he ImpactofFile:::si:ion on Code R:lvie:;mh papers that I give to Students I Of Code Review ' otatsize = 0; ‘ : \ tOOIS
W wrbiie  gimescmbe work with to show them how R -

Switzerland

cacua r— research should be carried out g 1
i and written up.” : b7

-- Reviewer 3 group phase individual phases

y,

by triangulating complementary evidence ina two-step study.
First, we observe developers’ code review activiy. We analyze

138 popular
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notaffected by it on o he e, ey have G4 ower ESEC/FSE 2022

R author =} reviewers

CCS CONCEPTS

KEYWORDS
Code Review, c Bi
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ABSTRACT

— a n e m pi ri c a I St u d y The most popular code review tools (e.g., Gerrit and GitHub) present

the files to review sorted in alphabetical order. Could this choice
S h a ri ng d ata & materia I S or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.
What to use First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
- rxiv (p re- p ri nt) 138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
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what to do potential problems we ruled out:

« filter out non-serious participants  participants’ groups are not
homogeneous

. controlling for possible confounding factors: e.g., the presence of
® ZenOdO (data & materla |S) discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
. g |t h u b ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are

« use the right statistics
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participants in finding the other

° Cond uct rObUStness teSting epre * yesl to maintain YOUf tOOIS! assigned to one of two treatments in which the position of the
® the defeCtS are too eaSY/d |ﬁ:|CU |t defective files is switched. For one type of defect, participants are
. but do not use for a rch |V| ng not affected by its file’s position; for the other, they have 64% lower

odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews’ outcome; we discuss
these implicati it i
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