From Code Review to Real-World Insights:
Dissecting Empirical Research in

Software Engineering

Alberto Bacchelli

Faculty of Business, Economics and
Informatics

75 7o o o
i) University of
<@gy Zurich™

L. Pascarella V. Kovalenko F. Palomba L. Di Geronimo

present-day E. Fregnan

- ~~
-
.

amazing Q\\
collaborators |

M. Storey G. Gousios C. Bird M. Castelluccio M. Aniche S. Proksch V. Hellendoorn
Uni. of Victoria Endor Labs Microsoft Mozilla Adyen TU Delft Google

.~ s

University of

Swiss National . 1 UzH
Zurich

Science Foundation

r
XXXIII

L

s Eva\
Y/ (od' 9,

&

First Come First Served:
The Impact of File Position on Code Review

Enrico Fregnan Larissa Braz Marco D’Ambros
fregnan, @ifi.uzh.ch larissa@ifi.uzh.ch marco.dambros@usi.ch
University of Zurich University of Zurich CodeLounge at Software Institute
Switzerland Switzerland Universita della Svizzera Italiana,
Switzerland
Gil Calikli Alberto Bacchelli
handangul.calikli@glasgow.ac.uk bacchelli@ifi.uzh.ch
University of Glasgow University of Zurich
Scotland Switzerland
ABSTRACT ACM Reference Format:

The most popular code review tools (e.g., Gerrit and GitHub) present
the files to review sorted in alphabetical order. Could this choice
or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.
First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
controlling for possible confounding factors: e.g., the presence of
discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are
assigned to one of two treatments in which the position of the
defective files is switched. For one type of defect, participants are
not affected by its file’s position; for the other, they have 64% lower
odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews’ outcome; we discuss
these results and implications for tool design and code review.
Preprint: https://doi.org/10.48550/arXiv.2208.04259
Data and Materials: https://doi.org/10.5281/zenodo.6901285

CCS CONCEPTS
« Software and its engineering — Empirical software validation.

KEYWORDS

Code Review, Controlled Experiment, Cognitive Bias

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °22, November 14-18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11.

https://doi.org/10.1145/3540250.3549177

Enrico Fregnan, Larissa Braz, Marco D’Ambros, Giil Calikli, and Alberto
Bacchelli. 2022. First Come First Served: The Impact of File Position on Code
Review. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE °22), November 14—18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549177

1 INTRODUCTION

Code review is a popular software engineering practice where de-
velopers manually inspect the code written by a peer [7, 40]. Code
review aims to find defects [11], improve software quality [3, 12],
and transfer knowledge [7, 48]. Over the years, code review has
evolved from a formal strictly-regulated process [22] into a less
strict practice. Contemporary code reviewing is informal, asynchro-
nous, change-based, and supported by tools [9, 10, 46, 48].

The tools used to conduct code reviews share many similari-
ties [11]. In particular, the vast majority of tools (including the
popular Gerrit [28] and GitHub [29]) present the changes to review
as a list/sequence of diff hunks [25] grouped by the file they belong
to. Tools sort these files alphabetically, therefore the changes to
a file named org/Controller. java are always presented before
those to a file named org/Model . java. Could this choice or, more
generally, the relative position in which a file is presented influence
the outcome of code review?

This hypothesis seems to be supported by at least two factors.
First, most developers tend to start their reviews in the order pre-
sented by the review tool [12]. Second, code review is a cognitively
demanding task [8] whose outcome might be influenced by cog-
nitive factors [42, 51] also related to the position of the file. For
example, developers may be influenced by attention decrement (a
decrease in attention when exposed to a list of elements [6]) or may
deplete their working memory capacity (the memory for short-term
storage during ongoing tasks [61]) near the end of longer reviews.

In this paper, we set to investigate this hypothesis. We do this
by triangulating complementary evidence in a two-step study.

In the first step, we focus on the relation between file position and
reviewers’ activity. We collect and analyze 219,476 Pull Requests
(PRs) from 138 GitHub open-source Java projects and investigate
whether the position in which a file is presented in a PR is associated
with the number of comments the file receives. In fact, the number
of comments can be used to approximate reviewers’ effectiveness

| am once again asking

you to stop blaming me and
submit quality papers instead

First Come First Served:
The Impact of File Position on Code Review

Enrico Fregnan Larissa Braz Marco D’Ambros
fregnan, @ifi.uzh.ch larissa@ifi.uzh.ch marco.dambros@usi.ch
University of Zurich University of Zurich CodeLounge at Software Institute
Switzerland Switzerland Universita della Svizzera Italiana,
Switzerland
Gil Calikli Alberto Bacchelli
handangul.calikli@glasgow.ac.uk bacchelli@ifi.uzh.ch
University of Glasgow University of Zurich
Scotland Switzerland
ABSTRACT ACM Reference Format:

The most popular code review tools (e.g., Gerrit and GitHub) present
the files to review sorted in alphabetical order. Could this choice
or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.
First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
controlling for possible confounding factors: e.g., the presence of
discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are
assigned to one of two treatments in which the position of the
defective files is switched. For one type of defect, participants are
not affected by its file’s position; for the other, they have 64% lower
odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews’ outcome; we discuss
these results and implications for tool design and code review.
Preprint: https://doi.org/10.48550/arXiv.2208.04259
Data and Materials: https://doi.org/10.5281/zenodo.6901285

CCS CONCEPTS
« Software and its engineering — Empirical software validation.

KEYWORDS

Code Review, Controlled Experiment, Cognitive Bias

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °22, November 14-18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11.

https://doi.org/10.1145/3540250.3549177

Enrico Fregnan, Larissa Braz, Marco D’Ambros, Giil Calikli, and Alberto
Bacchelli. 2022. First Come First Served: The Impact of File Position on Code
Review. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE °22), November 14—18, 2022, Singapore, Singapore. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549177

1 INTRODUCTION

Code review is a popular software engineering practice where de-
velopers manually inspect the code written by a peer [7, 40]. Code
review aims to find defects [11], improve software quality [3, 12],
and transfer knowledge [7, 48]. Over the years, code review has
evolved from a formal strictly-regulated process [22] into a less
strict practice. Contemporary code reviewing is informal, asynchro-
nous, change-based, and supported by tools [9, 10, 46, 48].

The tools used to conduct code reviews share many similari-
ties [11]. In particular, the vast majority of tools (including the
popular Gerrit [28] and GitHub [29]) present the changes to review
as a list/sequence of diff hunks [25] grouped by the file they belong
to. Tools sort these files alphabetically, therefore the changes to
a file named org/Controller. java are always presented before
those to a file named org/Model . java. Could this choice or, more
generally, the relative position in which a file is presented influence
the outcome of code review?

This hypothesis seems to be supported by at least two factors.
First, most developers tend to start their reviews in the order pre-
sented by the review tool [12]. Second, code review is a cognitively
demanding task [8] whose outcome might be influenced by cog-
nitive factors [42, 51] also related to the position of the file. For
example, developers may be influenced by attention decrement (a
decrease in attention when exposed to a list of elements [6]) or may
deplete their working memory capacity (the memory for short-term
storage during ongoing tasks [61]) near the end of longer reviews.

In this paper, we set to investigate this hypothesis. We do this
by triangulating complementary evidence in a two-step study.

In the first step, we focus on the relation between file position and
reviewers’ activity. We collect and analyze 219,476 Pull Requests
(PRs) from 138 GitHub open-source Java projects and investigate
whether the position in which a file is presented in a PR is associated
with the number of comments the file receives. In fact, the number
of comments can be used to approximate reviewers’ effectiveness

"The quality of this paper is such
that | would add it to the list of
papers that | give to students |

work with to show them how
research should be carried out

E. Fegnan
zest

and written up.”
-- Reviewer 3

E
ACM SIGSOFT

Distinguished Paper Award
ESEC/FSE 2022

&
L. Braz
zest

G. Calikli
U. of Glasgow

M. D'Ambros
CodelLounge@Si

W d9-w = Pros and Cons of Track Changes.docx - Microsoft Word (= fs=] u

“Home Insert Page Layout References Mailings Review View o @

&, Research a3 e s B E ﬁ § s |?& Final: Show Markup v @ @ ¥ Previous j vl '
2 H N Ll 74 N £

< Thesaurus 3 Show Markup ~ 92 Next
Spelling & ___ Translate Language New Delete Previous Next Track o Accept | Reject Compare Block Restrict
Grammar 23 Word Count v - Comment ~ Changes ~ [B] Reviewing Pane - v v v suthors - Editing

Proofing Language Comments Tracking %3 Accept and Move to Next Protect
L||2|1|)£|1-|-2-|-3-|-4-|-5-|-6-|-7-|-8-|-9-1-10-|-11-s-12-|-13-|.& Ad x
o ' ' ' ' ' ' ' ' ' ' | Accept and Move to Next
el Accept the current change and I

o Ad move to the next proposed change.
2 Click the arrow to accept many =
i changes at once.

{ Formatted: Heading 1, Space Before:]
T .- 0 pt, After: 0 pt, Line spacing: single

Some pros and cons of ‘track-changes’ feedback on work returned to

% students electronically
8 ,,{Formatted: Font: (Default) Arial, 11]
o Despite the fact that track-changes’ is normally used in one-to-one editing and feedback (for .- /

- example on draft theses, dissertations, reports and so on) it seems likely that ‘track-changes’

2 feedback is already well on the way towards replacing ‘handwritten comments on students’

: work in assessment in general. This short discussion is about using the [track-changes’| . .--| Comment [DA1}:)
: function in word-processing software to give students feedback when marking their R Formatted: Fonk: (pefuu) Al 11
- Work_ = e ek Hse-the track-change = - e e S

- : —The level of feedback can range from comments

. providing simple qualitative overall feedback on the whole document or on selected ,,,f-'[“’m?att_m Font: (Default) Arial, 11

- ! ety S AR B e ORGSR R T B ey pt, Highlight

e paragraphs or sentences, to very detailed feedback on jndividual words or phrases, This ; 1
- ; R - e AR S 000 SSCRTREsS T ki) { Formatted: Font: (Default) Arial, 11

: kind of feedback remains very valuable for large-scale work (essays, dissertations, long . { Formatted: Font: (Defaut) Aria, 11

g reports, drafts of articles for publication and so on). .. |_pt, Ttalic)

The other side of ‘track-changes’ is where-deletions, additions, replaced words or phrases &

can be suaaested. and the aoriainal author can accent or reiect each chanae in turn. workina 1 Formatted: Font: (Default) Arial, 11 |

software system

history

version |

software system

history

version |

reviewers

software system

history

version |

software system

history

version i

v -y 33 mEEE src/System.Collections.Immutable/tests/ImmutableListTest.cs |‘_|;|

X @@ -164,29 +164,34 @@ public void AddRangeOptimizationsTest()
164 164 [Fact]
165 165 public void AddRangeBalanceTest()
166 166 {
167 + int randSeed = (int)DateTime.Now.Ticks;
168 + Console.WriteLine("Random seed: {@0}", randSeed);
169 + var random = new Random(randSeed);
170 +
171 + int expectedTotalSize = 0;
172 +
167 173 var list = ImmutableList<int>.Empty;
168 174
169 - // Add batches of 32, 128 times, giving 4096 items
170 - int batchSize = 32;
175+ // Add some small batches, verifying balance after each
171 176 for (int 1 = 0; 1 < 128; i++)
172 177 {

reviewers

software system

history

version i

v -y 33 mEEE src/System.Collections.Immutable/tests/ImmutableListTest.cs Ll;]

X @@ -164,29 +164,34 @@ public void AddRangeOptimizationsTest()
164 164 [Fact]
165 165 public void AddRangeBalanceTest()
166 166 {
167 + int randSeed = (int)DateTime.Now.Ticks;
168 + Console.WriteLine("Random seed: {@0}", randSeed);
169 + var random = new Random(randSeed);
170 +
171 + int expectedTotalSize = 0;
172 +
167 173 var list = ImmutableList<int>.Empty;
168 174
169 - // Add batches of 32, 128 times, giving 4096 items
170 - int batchSize = 32;
175+ // Add some small batches, verifying balance after each
171 176 for (int 1 = 0; 1 < 128; i++)
172 177 {

reviewers

reviewers

software system

history

version |

software system

history

version i

software system

history

version i version I+1

extremely widespread

« About 70% of developers
spend 2 to 8 hours a week
reviewing code.

[Stack Overflow Dev Survey 2019]

« In 2021, 170M pull requests
have been merged in GitHub.

[The 2021 State of the Octoverse]

reviewers

« Most (possibly all) code
changes at Google, Meta, and
Microsoft are reviewed.

software engineering
is a socio-technical space(*)

- - -

"technical
' aspects

/ , .
/ , \
/ , \
/ , \
/ , \
/ , \
/) \

/ , \
/ , \
I , |
I , |
I ' |
I ’ ‘

uman . |
aspects	,
‘	
\ ‘ |
\ \ |
\ \ I
\ \ I
\ . I
\ . /
\ . /
\ . /
\ . /
\ . /
\ . /
) \

= — —_ -

socio-technical

* -
aspects (*) Prof. Dr. Margaret-Anne Storey

Keynote @ ICSE 2018

software engineering
IS a socio-technical space

|

human |
aspects'

' technical
. aspects

)

aspects

software engineering
IS a socio-technical space

|

human |
aspects'

' technical
. aspects

)

aspects

software engineering
IS a socio-technical space

|

human |

' technical
aspects: ’

' aspects

I

aspects

reviewers

software system

history

version |

software system

history

version i

v -y 33 mEEE src/System.Collections.Immutable/tests/ImmutableListTest.cs Ll;]

X @@ -164,29 +164,34 @@ public void AddRangeOptimizationsTest()
164 164 [Fact]
165 165 public void AddRangeBalanceTest()
166 166 {
167 + int randSeed = (int)DateTime.Now.Ticks;
168 + Console.WriteLine("Random seed: {@0}", randSeed);
169 + var random = new Random(randSeed);
170 +
171 + int expectedTotalSize = 0;
172 +
167 173 var list = ImmutableList<int>.Empty;
168 174
169 - // Add batches of 32, 128 times, giving 4096 items
170 - int batchSize = 32;
175+ // Add some small batches, verifying balance after each
171 176 for (int 1 = 0; 1 < 128; i++)
172 177 {

reviewer

vidual phases

5'..

cognitive-aspects
heavy

The Dual Nature

software system

history

Of Code Review

~

165
166

167
168
169
170

171
172

33 EEEE

164
165
166
167
168
169
170
171
172
173
174

175
176
177

+ + + + + +

src/System.Collections.Immutable/tests/ImmutableListTest.cs ﬂ;

@@ -164,29 +164,34 @@ public void AddRangeOptimizationsTest()

[Fact]
public void AddRangeBalanceTest()

{

int randSeed = (int)DateTime.Now.Ticks;
Console.WriteLine("Random seed: {@0}", randSeed);

var random = new Random(randSeed);

int expectedTotalSize = 0;

var list = ImmutableList<int>.Empty;

// Add batches of 32, 128 times, giving 4096 items
int batchSize = 32;

// Add some small batches, verifying balance after each

for (int 1 = 0; i < 128; i++)

version i

social-aspects

heavy

group phase

cognitive-aspects
heavy

v -3 33 EEEE src/System.Collections.Immutable/tests/ImmutableListTest.cs LI;I
x @@ -164,29 +164,34 @@ public void AddRangeOptimizationsTest()
164 164 [Fact]
165 165 public void AddRangeBalanceTest()
166 166 {
e u a a u re 167 + int randSeed = (int)DateTime.Now.Ticks;
168 + Console.WriteLine("Random seed: {@0}", randSeed);
o 169 + var random = new Random(randSeed);
170 +
Of COd e Rev I eW iy + int expectedTotalSize = 0;
172 +
167 173 var list = ImmutableList<int>.Empty;
168 174
169 - // Add batches of 32, 128 times, giving 4096 items
170 - int batchSize = 32;
175 + // Add some small batches, verifying balance after each
171 176 for (int 1 = 0; 1 < 128; i++)
172 177 {

group phase

social-aspects
heavy

cognitive-aspects
heavy

software system

history

version i version I+1

zest's take on code review

 relevance, simplicity,
iInnovation, & interdisciplinarity

reviewers

« focus on:

 tooling for people
- developers' behavior

e cognitive aspects

Z urich :
iy « collaboration
€ mpirical
S oftware engineering » education & training

T eam

O Handle cancelling o

O 8 github.com
L)) Conversation 14 -0 Commits 2 [F) Checks 22 Files changed 5 +106 -11 EEEN
[J) changes from all commits ~ File filter v Conversations v 63 ~ 0/5 files viewed ~ ®
Q Filter changed files v -3 @ 11 mmmm extensions/ql-vscode/src/authentication.ts ((J (O viewed = <--
v B extensions/ql-vscode/src 1 @ -7,7 +7,7 @@ const GITHUB_AUTH_PROVIDER_ID = 'github';
D authentication.ts ol 7 // https://docs.github.com/apps/building—oauth-apps/understanding-scopes—-for-oauth-apps
8 const SCOPES = ['repo'l;
[query-history.ts]
. 10 -
v [remote-queries /%
10 + /%%
(O gh-actions-api-client.ts [<] 11 11 * Handles authentication to GitHub, using the VS Code [authentication API](https://code.visua
. 12 12
[remote-queries-manage... [X/
13 13 export class Credentials {
v [vscode-tests/no-workspacefr... -3 @e -18,6 +18,15 @@ export class Credentials {
gh-actions-api-client.tes... 18 18 // eslint-disable-next-line @typescript-eslint/no-empty-function
19 19 private constructor() { }
Give feedback 20 20
21+ /kx
22+ * Initializes an instance of credentials with an octokit instance.
23+ *
24 + * Do not call this method until you know you actually need an instance of credentials.
25 + * since calling this method will require the user to log in.
26 + *
27 + * @param context The extension context.
28 + % @returns An instance of credentials.
29 + */
21 30 static async initialize(context: vscode.ExtensionContext): Promise<Credentials> {
22 31 const ¢ = new Credentials();
23 32 c.registerListeners(context);
v @ 25 mEmEE extensions/ql-vscode/src/query-history.ts L[,j [viewed *--
L @@ -36,6 +36,8 @@ import { QueryStatus } from './query-status';
36 36 import { slurpQueryHistory, splatQueryHistory } from './query-serialization';
37 37 import % as fs from 'fs-extra';
38 38 import { CliVersionConstraint } from './cli';
39 + import { Credentials } from './authentication';
40 + import { cancelRemoteQuery } from './remote-queries/gh-actions-api-client"';
39 41
40 42 /*%
41 43 * query-history.ts
+ @@ -316,7 +318,7 @@ export class QueryHistoryManager extends DisposableObject {
316 318 private qgs: QueryServerClient,
317 319 private dbm: DatabaseManager,
318 320 private queryStorageDir: string,
319 - ctx: ExtensionContext,
321+ private ctx: ExtensionContext,
320 322 private queryHistoryConfigListener: QueryHistoryConfig,
321 323 private doCompareCallback: (

S —————————————

code review

tools

benefit-section-1b.png (PNG | X

C Q hevodata.com

CR-FE-8851 109 v Prefs v Y Fitr (O 1h55min
Details [/sre/.../trackedbranch/TrackedBranchesSearchCriteria. java ¢ Added 4 FishEye « File Outdated ~
Objectives

e0a7adc

General Comments

Number of files included: 28 return new TrackedBranchesSearchCriteriaBuilder();

v 34
law src
v (@@ bundled-plugins/bundled/crucible-branch-reviev public static TrackedBranchesSearchCriteria withReview(String reviewPermald) {
return builder().reviewPermald(reviewPermalId).build();
v [src
v (= main

Piotr Swiecicki

v = 2 va/ct;mllatlassmn/crucnble/p lugins/br providing null/empty reviewPermald results in criteria matching all reviews, I'd rather expect precondition failure in such circumstances
v mode
Add to favourites - Create issue - 27 Aug 14
v @ ao
(¥) BranchReviewInfoAO.java
- view g Cezary Zawadka
Y H H
Q BranchReviewInfo.java (1 Null is ok as we search for all tracked branches regardless review - auto update feature
(] BranchReviewStore java | 1 However non null perma id means we should return empty list if there is no review with the perma id - changed to be handled at
v |aw rest ReviewPropertiesManager level
(¥) BranchReviewRestResource. Create issue * 29 Aug 14
() TrackedBranchRest.java | 8
(] TrackedBranchRestBuilder.jav: \" Piotr Swiecicki
v & trackedbranch fine for reviewPermald property, but if client calls withReview method to build criteria, I'd assume he wanted to filter by particular perm id
v @ impl and was not expecting to pass null.
() DefaultTrackedBranchesMe Create issue - 29 Aug 14

(¢¥) TrackedBranchJson.java

(V) TrackedBranchSerializer.ja\ ‘ Cezary Zawadka

(@ TrackedBranch.java (1 My mistake - for withReview() precondition makes sense

(¥) TrackedBranchBuilder.java Create issue - 29 Aug 14

(] TrackedBranchesManager.javz

TrackedBranchesSearchCriteri
() BranchReviewService.java (17

public static class TrackedBranchesSearchCriteriaBuilder {
v a9 resources 40

! private String reviewPermald;

reviewboard.org

Commits

First Last Summary Author

® @ + Fix regressions from merges and unit test updates. Christian Hammond
Files

reviewboard/diffviewer/parser.py

O reviewboard/scmtools/tests/testcases.py []

+ Expand changes + Show extra whitespace = Hide whitespace changes

reviewboard/diffviewer/parser.py
.~ Revision 9202df3d606698156d78353837c6293f2d7432dd .~ New Change
=+ 266 lines
F20 F| class ParsedDiffFile(object):
267 #: 267 #:
268 #: Version Added: 268 #: Version Added:
269 #: 4.0.6 269 # 4.0.6
270 #: 270 #:
271 #: Type: 271 #: Type:
272 #: int 272 #: str
273 old_unix_mode = TypedProperty(six.text_type) 273 old_unix_mode = TypedProperty(str)
274 274
275 #: The new UNIX mode for the file. 275 #: The new UNIX mode for the file.
276 #: 276 #:
277 #: Version Added: 277 #: Version Added:
278 #: 4.0.6 278 #: 4.0.6
279 #: 279 #:
280 #: Type: 280 #: Type:
281 #: int 281 #: str
282 new_unix_mode = TypedProperty(six.text_type) 282 new_unix_mode = TypedProperty(str)
283 283
284 #: The parsed original name of the file. 284 #: The parsed original name of the file.
285 #: 285 #:
286 #: Deprecated: 286 #: Deprecated:
287 # 4.0: 287 #: 4.0:
[+ 20| +| 1304 lines
F20 "+ def parse_diff(self):
1592 symlink_target = file_meta.get('symlink target') 1592 symlink_target = file_meta.get('symlink target')
1593 1593

\ 1594 if isinstance(symlink_target, dict): 1594 if isinstance(symlink_target, dict):

O Handle cancelling of remote qu« X +

O 8 github.com Work |llI 110% 32

code review

L) Conversation 14 -O- Commits 2 [F) Checks 22 Files changed 5
[]] cChanges from all commits ~ File filter v Conversations v {33 ~ 0 /5 files
Q Filter changed files v -+ () 11 mmmm extensions/ql-vscode/src/authentication.ts (&
v extensions/ql-vscode/src g @@ -7,7 +7,7 @@ const GITHUB_AUTH_PROVIDER_ID = 'github';
.. 7 7 : g1 . i lding—oauth- d tand
[\ authentication.ts O // https://docs.github.com/apps/building—oauth-apps/understan
8 const SCOPES = ['repo'];
(Y query-history.ts (] 9 9

Files are ordered linearly and I8 romot-cumries 0

10+ /xx
o (@ gh-actions-api-client.ts (] 11 11 * Handles authentication to GitHub, using the VS Code [authen
a | p h a bet I Ca | |yo (Y remote-queries-manage... [*] 12 12 */
13 13 export class Credentials {
v [vscode-tests/no-workspacefr... -3 @@ -18,6 +18,15 @@ export class Credentials {
D gh-actions-api-client.tes... 18 18 // eslint-disable-next-1line @typescript-eslint/no-empty-func
19 19 private constructor() { }
Give feedback 20 20
21 + /%%
|d h ° h ° h ff 22+ * Initializes an instance of credentials with an octokit in
Could this choice have an eftect N .
24 + * Do not call this method until you know you actually need
d . I |t ? 25 + * since calling this method will require the user to log in
on code review s resulits: % 4
27 + * @param context The extension context.
28 + % @returns An instance of credentials.
29 + */
21 30 static async initialize(context: vscode.ExtensionContext): P

How would you test S e a0
this hypothesis?

e — -

vy @ 25 EEEmm extensions/ql-vscode/src/query-history.ts @

x @@ -36,6 +36,8 @@ import { QueryStatus } from './query-status'
36 36 import { slurpQueryHistory, splatQueryHistory } from './query-
37 37 import
38 38 import

39 + import

as fs from 'fs—-extra';
CliVersionConstraint } from './cli';
Credentials } from './authentication';

R W 2

40 + import cancelRemoteDuerv ¥ from ' /remote—aiieriec/ah—-actionc

an observational study

o “

o)

O Add bot filter, co-author logic b X + v

~ > C O B &2 https://github.com/JetBrains-Research/bus-factor-explorer/r ©® v & 0

}~ Merged

Q. Filter changed files

[GitHubClient.kt

v [task

[) ComputeBusFactorJob.kt

Add bot filter, co-author logic #1
E] Changes from all commits ¥

[

v [src/main/kotlin/org/jetbrains/rese...
v [calculation
[BusFactor.kt
[BusFactorComputationCon...
v [mappers
[UserMapper.kt
v [processors
[CommitProcessor.kt
v [service
v [github

0/ 6 files viewed

Review in codespace Review changes ~

[Jviewed L[] -

File filter v Conversations ~ @3 v

...main/kotlin/org/jetbrains/research/ictl/riskypatterns/servic.. LD

va Vi LUY s LITTVL T CPYUO LLUIL YU LUTICU Yy

63 63 executionEnvironment. logFile. log(repositoryCloned)
64 64

65 + val bots = gitHubClient. loadBots(payload.owner, payload.repo)
egorklimov marked this conversation as resolved. -3+ Hide resolved

ﬁ egorklimov on May 25 Collaborator ***

Remove it from the time measurement scope, please.

®

&) Reply...

65 66 val started = System.currentTimeMillis()

66 - val busFactor = BusFactor(File(executionEnvironment.gitDir,
".git"))

67 + val busFactor = BusFactor(File(executionEnvironment.gitDir,

".git"), bots)

67 68 val tree = busFactor.calculate(payload.fullName)

68 69 val ended = System.currentTimeMillis()

69 70

e

C) Pull requests - microsoft/vscode X +

ations of the same set of scopes v
Approved 2 September 2023

ractive window is open v
ed CP September 2023

settings Ul v
ved CP September 2023

escriptions v
ved CP September 2023

scription v
ved CP September 2023

s cache for improved performance X

aft

tension v
Approved CP September 2023

ttings Ul v
ved CP September 2023

Dg message v git
ved CP September 2023

king v
proved CP September 2023

(1]
(1]
(1]
%

03

an observational study

Comments as proxy for reviewers' activity

What (else) could affect the
number of comments on files
(i.e., confounding factors)?

« change size

. test files

« number of participants
» bots

« threads
« 7

- big data matters

M. D'Ambros
CodeLounge @Sl

O Pull requests - microsoft/vscode X +

ps://github.com/microsoft/vscode/pulls?page=3&q=is%:

O 8 &=

htt
—

I~ Use SequencerByKey to sequence operations of the same set of scopes v
#192638 by TylerLeonhardt was merged 4 days ago - Approved CP September 2023

I~ only show IW focus command if an interactive window is open v/
#192637 by amunger was merged yesterday - Approved Cl'D September 2023

¥~ fix: markdown for more descriptions in settings Ul v/
#192636 by joyceerhl was merged 4 days ago - Approved CP September 2023

I~ fix: use markdown in terminal setting descriptions v
#192634 by joyceerhl was merged 4 days ago - Approved CP September 2023

£~ fix: use markdown for HTML setting description v/
#192633 by joyceerhl was merged 2 days ago - Approved CP September 2023

I3 feature: skip verifying builtin extensions cache for improved performance X
triage-needed

#192631 by SimonSiefke was closed 9 hours ago - Draft

I~ Log a lot more of the Microsoft Auth extension v
#192629 by TylerLeonhardt was merged 4 days ago - Approved C:D September 2023

¥~ fix: render setting reference links in settings Ul v/
#192628 by joyceerhl was merged 4 days ago - Approved CP September 2023

I~ Git - remove extra character from the log message v git
#192622 by Iszomoru was merged 4 days ago - Approved CP September 2023

¥~ cli: fix delegated http requests not working v
#192620 by connor4312 was merged 4 days ago - Approved C;D September 2023

Work il 83 ¥

& & & B @

03

D3

an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K pull requests
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

1500

1000

500

cumulative number of
review comments
by file position

pull requests with 5 files

an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

pull requests with 5 files

pull requests with 2 files

7'000 1'500

1000
3'500

500

0
1st 2nd 1st 2nd 3rd Ath 5th

file position file position

cumulative number of
review comments
by file position

pull requests with 7 files pull requests with 10 files

800 500

400
600

300

400
200

200
100

0 0]

1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

file position file position

an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects
(Java-based with > 1k stars)...

... and saw this.

pull requests with 5 files

pull requests with 2 files

7'000 1'500

1000
3'500

500

0
1st 2nd 1st 2nd 3rd Ath 5th

file position file position

cumulative number of
review comments
by file position

pull requests with 7 files pull requests with 10 files

800 500

400
600

300

400
200

200
100

0 0]

1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

file position file position

pull requests with 2 files

7'000

an observational study

Comments as proxy for reviewers' activity

We analyzed ~200K PRs
from 138 popular GitHub projects

3'500

pull requests with 5 files

1'500

1000

500

0

(Java-based with > 1k stars)... o W e
what are the 1ulative number of
. .. e wwiew comments
and saw this. limitations of an by file position

observational study? .

800

1) where is the error?

2) does it hold with statistics?

0

1st 2nd 3rd 4th 5th 6th 7th

file position

pull requests with 10 files

500
400
300
200

100

0]

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

file position

a controlled experiment

a.k.a. the gold standard for causal inference

main ingredients
¢« randomization
« control

e manipulation

What would be the
perfect experiment?

a controlled experiment

a.k.a. the gold standard for causal inference

main ingredients lessons learned

« randomization - the perfect experiment is
often infeasible, but it's a good
reference point

e control
- manipulation |
 it's ok to trade-off some
realism to increase the visibility
of the effect

« more participants is better
than better participants

a controlled experiment
design

a controlled experiment
design

N
a.jave

b.java

c.java

d.java

e.jJava

design

-l'@/.'.)o
o/ *s

/=X ,
a controlled experiment

design

N
c.java
participants

d.java

e.jJava

'l'@/-..)o
0/ *+

Welcome Page

/=X ,
a controlled experiment

design

Random aSS|gnment to a treatment

aspects to consider . .
« experiment platform

{FI2F|3FI 4} {File 4, File 3, File 2}

e C h dn g es \ Code review task
bugs

Post-review
questionnaire

- confounding factors
participants
» consent
» recruiting

Demographics Closing page

-l'@/.'.)o
o/ *s

Welcome Page

7 , /
a controlled experiment *

design

Random aSS|gnment to a treatment

e Il II
|
e experiment platform

{File 2, File 3, File 4} {File 4, File 3, File 2}

"
« Objects -
¢ ChangeS Coderewewtask
bugs

Post-review
questionnaire

- confounding factors
« participants

 consent

* recruiting

D. Spadini

—
https://aithub.com/ishepard/CREX erlment N Demographios Closing page

a controlled experiment
design

aspects to consider
« experiment platform
e objects

- changes

» bugs
- confounding factors
« participants

» consent

» recruiting

a controlled experiment
design

aspects to consider

a.java

« experiment platform

« Objects

b.java

 changes

¢ bugS c.java

- confounding factors
d.java

« participants

 consent

e.java

» recruiting

a controlled experiment
design

aspects to consider —
. a.jav

« experiment platform ‘
« Objects |
b.java

- changes

¢ bugs c.java

- confounding factors

d.java

« participants

 consent

» recruiting

'I'@/.'.)o
o/ *s

/=X ,
a controlled experiment

® switch (destinationAddress.getCountry()) {
es I g n case "USA":

shippingCost = shippingCost * 1.2;
break;

case "Canada":
shippingCost = shippingCost * 1.18;
break;

case "Mexico":

aspects to consider

o shippingCost = shippingCost * 1.35;
- experiment platform

experimen daltor —

shippingCost = shippingCost * 1.27;
o (D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,
P O bJ e CtS the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied.
: default:
b'Java shippingCost = shippingCost x 2;
| }
® C h a n g eS | return shippingCost;

YES S
* Returns the discount rate based on the membership level of the
® bugs C-java customer.
* Customers at level 1 do not receive any discount.
* Customers at level 2 to 4 receive a 10% discount.
* Customers from level 5 included receive a 25% discount.

o Confou nd i ng fa Cto rS * @param membershipLevel - the level of membership of the customer

* @return the discount rate applied to the customer
. */
d-Java public double getSaleDiscountRate(int membershipLevel){

o pa rtiCi pa ntS double discountRate = 0;

if(membershipLevel > 2 && membershipLevel < 5) {

(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

 consent

discountRate = 0.1;

}

if (membershipLevel >= 5) {
discountRate = 0.25;

» recruiting

}

return discountRate;

a controlled experiment
design

aspects to consider
« experiment platform
e objects

- changes

» bugs
- confounding factors
« participants

» consent

» recruiting

finding the right objects is an art...

you need to pilot your experiment!

15 participants (using RITE)

AEIOU

AFFINITY DIAGRAMMING
ARTIFACT ANALYSIS
AUTOMATED REMOTE RESEARCH
BEHAVIORAL MAPPING
BODYSTORMING

BRAINSTORM GRAPHIC ORGANIZERS
BUSINESS ORIGAMI

CARD SORTING

CASE STUDIES

COGNITIVE MAPPING
COGNITIVE WALKTHROUGH
COLLAGE

COMPETITIVE TESTING
CONCEPT MAPPING

CONTENT ANALYSIS

CONTENT INVENTORY & AUDIT
CONTEXTUAL DESIGN
CONTEXTUAL INQUIRY
CREATIVE TOOLKITS

CRITICAL INCIDENT TECHNIQUE
CROWDSOURCING

CULTURAL PROBES

CUSTOMER EXPERIENCE AUDIT
DESIGN CHARETTE

DESIGN ETHNOGRAPHY

DESIGN WORKSHOPS
DESIRABILITY TESTING

DIARY STUDIES

DIRECTED STORYTELLING
ELITO METHOD

ERGONOMIC ANALYSIS
EVALUATIVE RESEARCH
EVIDENCE-BASED DESIGN
EXPERIENCE PROTOTYPING
EXPERIENCE SAMPLING METHOD
EXPERIMENTS

EXPLORATORY RESEARCH

EYETRACKING

FLEXIBLE MODELING
FLY-ON-THE-WALL OBSERVATION
FOCUS GROUPS

GENERATIVE RESEARCH
GRAFFITI WALLS

HEURISTIC EVALUATION

IMAGE BOARDS

INTERVIEWS

KJ TECHNIQUE

KANO ANALYSIS

KEY PERFORMANCE INDICATORS
LADDERING

LITERATURE REVIEWS

THE LOVE LETTER & THE BREAKUP LETTER
MENTAL MODEL DIAGRAMS
MIND MAPPING

OBSERVATION

PARALLEL PROTOTYPING
PARTICIPANT OBSERVATION
PARTICIPATORY ACTION RESEARCH
PARTICIPATORY DESIGN
PERSONAL INVENTORIES
PERSONAS

PHOTO STUDIES

PICTURE CARDS

PROTOTYPING

RITE

Rapid Iterative Testing & Evaluation

Universal Methods
of Design

Bella Martin
Bruce Hanington

—
~

100 Ways to Research Complex
Problems, Develop Innovative Ideas,
and Design Effective Solutions

.LUOd)IOOH

TEST O

Test O is a dry run. After you
make any necessary changes,
you set your counter for
5 successful, sequential tests.

TEST 3
* 'i|
Test 3 also fails. After fixing the

issues, you reset your counter for
5 more successful tests.

Test 6 fails. After fixing the
issues, you reset your counter for
5 more successful tests.

Test 9 succeeds. You need
2 more successful tests.

AN EXAMPLE TEST CYCLE USING THE RITE METHOD?

TEST] TEST 2
i

Test 2 fails. After fixing the
issues, you reset your counter for
5 more successful tests.

Test 1 succeeds. You need
4 more successful tests.

TEST 4 TEST 5

il il

Test 5 succeeds. You need
3 more successful tests.

Test 4 succeeds. You need
4 more successful tests.

Test 8 succeeds. You need
3 more successful tests.

Test 7 succeeds. You need
4 more successful tests.

Test 10 succeeds. You need Test 11 succeeds.
1 more successful test. The design succeeds!

Totals: 11 participants
4 revised prototypes

'l'@/‘.)o
0/ *+

/=X :
a controlled experiment

design

shippingCost
break;

case "Canada":
shippingCost = shippingCost * 1.18;
break;

case "Mexico":
shippingCost = shippingCost * 1.35;
break;

case "UK":
shippingCost = shippingCost * 1.27;

Ig Break defect: Here a break statement is missing. In this way, when the country is UK,
fill fall through the default case and a wrong tax of 1.27 * 2 will be applied.

+ objects how do we know if =

shippingCost = shippingCost * 2;
}

+ changes they found the bug?

—— =aneturns the discount rate based on the membership level of the
o bugs C.java customer.

* Customers at level 1 do not receive any discount.
Customers at level 2 to 4 receive a 10% discount.
Customers from level 5 included receive a 25% discount.
@param membershiplLevel - the level of membership of the customer
@return the discount rate applied to the customer

shippingCost * 1.2;

aspects to consider

« experiment platform

%

%

X

- confounding factors

X

. J
d-Java public double getSaleDiscountRate(int membershipLevel){

°® pa rtiCi pa ntS double discountRate = 0;

if (membershipLevel > 2 && membershipLevel < 5) {

(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

 consent

discountRate = 0.1;

}

if (membershipLevel >= 5) {
discountRate = 0.25;

» recruiting

}

return discountRate;

a controlled experiment
design

aspects to consider

« experiment platform

+ objects What could be
» changes confounding factors?

» bugs
« confounding factors
« participants

» consent

» recruiting

'l'@/-'.)o
0/ *+

/=X ,
a controlled experiment

design
aspects to consider confounding factors we considered
- experiment platform « time
» Objects INnterruptions
- changes

« practice

¢ bugs :
J « experience

« confounding factors .
« education level
« participants
« consent

e recruiting

a controlled experiment

design

aspects to consider

experiment platform
objects

- changes

» bugs
confounding factors
participants

» consent

» recruiting

a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

e consent

» recruiting

a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

How many

participants do
we heed?

a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

How many
participants do

we need?
o compute it with Power Analysis

» yOou need some ideas of what
effect to expect

 find more info in this amazing

book: https://lakens.github.io/
statistical inferences/

» go beyond the value you found

https://lakens.github.io/statistical_inferences/
https://lakens.github.io/statistical_inferences/
https://lakens.github.io/statistical_inferences/

a controlled experiment
design

aspects to consider
« experiment platform
« Objects

- changes

» bugs
- confounding factors
« participants

» consent

e recruiting

how to recruit participants
« personal network
« professional network

« social networks (X, LinkedIn, ...)
e reddit

be nice & offer donations if you can

a controlled experiment
data analysis

&)

ﬁ w
& .
a controlled experiment

data analysis

what to do
. filter out non-serious participants
 use the right statistics

» read Dr. Laken's book!

« conduct robustness testing

ﬁ w
& .
a controlled experiment

data analysis

what to do
. filter out non-serious participants
 use the right statistics

» read Dr. Laken's book!

« conduct robustness testing

ﬁ w
& .
a controlled experiment

data analysis

what to do
. filter out non-serious participants
» use the right statistics

» read Dr. Laken's book!

« conduct robustness testing

ﬁ w
& .
a controlled experiment

data analysis

what to do What cou{d be
. . . potential
+ filter out non-serious participants :
biases?

 use the right statistics - —
« read Dr. Laken's book!

- conduct robustness testing

ﬁ w
& .
a controlled experiment

data analysis

what to do potential problems we ruled out:
. filter out non-serious participants » participants’ groups are not
homogeneous

 use the right statistics
» one defect might influence

- read Dr. Laken's book! e Y
participants in finding the other

- conduct robustness testing o
» the defects are too easy/difficult

« a low number of participants

a controlled experiment
results

switch (destinationAddress.getCountry()) { /%%
case "USA": * Returns the discount rate based on the membership level of the
— s customer.
shippingCost = shippingCost * 1.2; * Customers at level 1 do not receive any discount.
break; * Customers at level 2 to 4 receive a 10% discount.
case "Canada": * Customers from level 5 included receive a 25% discount.
shippingCost = shippingCost * 1.18; * @param member;hipLevel - the lgvel of membership of the customer
break; x/@return the discount rate applied to the customer
" - ",
| GaSC f?eXJ..co = . . public double getSaleDiscountRate(int membershipLevel){
. shippingCost = shippingCost * 1.35; double discountRate = 0;
break; if(membershipLevel > 2 && membershiplLevel < 5) {
case "UK": (D cC: Corner Case defect: Here the if statement is missing a check for the condition where
shippingCost = shippingCost x 1.27; Icustlomer.r:w:an;ber:shllzLevell== 2.19;czrdmg t(: the Javadoc of the function, customers with membership
— = = - - evel equal to 2 should receive a 10% discoun
(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK, LG & (0
the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied. }
default: if(merrlbershipLevel >= 5) {
shippingCost = shippingCost * 2; y discountRate = 8.25;
} return discountRate;
u return shippingCost; }

b.java

c.java

participants

d.java

switch (destinationAddress.getCountry()) { /%%

case "USA": * Returns the discount rate based on the membership level of the
. . . . customer.

shippingCost = shippingCost * 1.2; * Customers at level 1 do not receive any discount.
break; * Customers at level 2 to 4 receive a 10% discount.

case "Canada": * Customers from level 5 included receive a 25% discount.
shippingCost - shippingCost * 1.18; * @param membershipLevel - the level of membership of the customer
break: * @return the discount rate applied to the customer

’
*/
" 1 ",
| case "Mexico": public double getSaleDiscountRate(int membershipLevel){

shippingCost = shippingCost * 1.35; double discountRate = 0;

break; if(membershipLevel > 2 && membershipLevel < 5) {
case "UK": (D cc: Corner Case defect: Here the if statement is missing a check for the condition where
shippingCost = shippingCost % 1.27; customer.membershlpLeveIl== 2. Accordmg to the Javadoc of the function, customers with membership
— - — - - level equal to 2 should receive a 10% discount
(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,

discountRate = 0.1;

the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied. }

default: if(membershipLevel >= 5) {
discountRate = 0.25;

shippingCost = shippingCost * 2; y
} return discountRate;
I return shippingCost; }

e.jave

b.java d.java

c.java c.java

participants

d.java b.java

e.jJava a.jave

results

participants

a controlled experiment

switch (destinationAddress.getCountry()) {
case "USA":
shippingCost
break;
case "Canada":
shippingCost
break;
case "Mexico":
shippingCost
break;
case "UK":
shippingCost = shippingCost * 1.27;

shippingCost * 1.2;

shippingCost * 1.18;

shippingCost * 1.35;

(D MB: Missing Break defect: Here a break statement is missing. In this way, when the country is UK,
the execution will fall through the default case and a wrong tax of 1.27 * 2 will be applied.

default:
shippingCost = shippingCost * 2;
}

return shippingCost;

same likelihood of
finding the bug
(42%)

a controlled experiment
results 175% more likely

to find the bug

/%%

* Returns the discount rate based on the membership level of the
customer.

* Customers at level 1 do not receive any discount.
Customers at level 2 to 4 receive a 10% discount.
Customers from level 5 included receive a 25% discount.
@param membershipLevel - the level of membership of the customer
@return the discount rate applied to the customer

*

*

*

%

*/
public double getSaleDiscountRate(int membershiplLevel){
double discountRate = 0;
if(membershipLevel > 2 && membershipLevel < 5) {
(D ccC: Corner Case defect: Here the if statement is missing a check for the condition where
customer.membershipLevel == 2. According to the Javadoc of the function, customers with membership
level equal to 2 should receive a 10% discount

discountRate = 0.1;

}
if(membershipLevel >= 5) {
discountRate = 0.25;

}

return discountRate;

participants

an empirical study

sharing data & materials

an empirical study

sharing data & materials

what to use
e arxiv (pre-print)
« zenodo (data & materials)
e github
 yes, to maintain your tools!

» but do not use for archiving

ABSTRACT

The most popular code review tools (e.g., Gerrit and GitHub) present
the files to review sorted in alphabetical order. Could this choice
or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.

First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when
controlling for possible confounding factors: e.g., the presence of
discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are
assigned to one of two treatments in which the position of the
defective files is switched. For one type of defect, participants are
not affected by its file’s position; for the other, they have 64% lower
odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews outcome; we discuss
these re and imnlications for tool decion and code i

/ Preprint: https://doi.org/10.48550/arXiv.2208.04259
\Data and Materials: https://doi.org/10.5281/zenodo.6901285

an empirical study

thank you to all co-authors
[ESEC/FSE 2023] First Come First Served: The Impact of File Position on Code Review ¥

Enrico Fregnan, Larissa Braz, Marco D'Ambros, Gul Calikli, Alberto Bacchell

[ICSE 2022] Less is More: Supporting Developers in Vulnerability Detection during Code Review
Larissa Braz, Christian Aeberhard, Gul Calikli, Alberto Bacchelli

[ICSE 2021] Why Don’t Developers Detect Improper InputValidation?'; DROP TABLE Papers; -- ¥
Larissa Braz, Enrico Fregnan, Gul Calikli, Alberto Bacchelli

[CHI2020] Ul Dark Patterns and Where to Find Them: A Study on Mobile Applications and User Perception

Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio Palomba, Alberto Bacchelli

[ICSE 2020] Primers or Reminders? The Effects of Existing Review Comments on Code Review
Davide Spadini, Gul Calikli, Alberto Bacchelli

[ICSE 2019] Test-Driven Code Review: An Empirical Study

Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink, Alberto Bacchelli

D. Spadini F. Palomba T. Baum S. Hanenberg M. Bruntink L. Di Geronimo G. Calikli L. Braz E. Fregnan C. Aeberhard M. D'Ambros
zest zest U. Hannover U. Duisburg-Essen SIG zest zest zest zest zest CodelLounge@Si

Dissecting Empirical Research in Software Engineering

"The quality of this paper is such \ . X e :
oo that | would add it to the list of The Dual Nature C e [| code review e —

First Come First Served:

o 'I;he ImpactofFile:::si:ion on Code R:lvie:;mh papers that I give to Students I Of Code Review ' otatsize = 0; ‘ : \ tOOIS
W wrbiie gimescmbe work with to show them how R -

Switzerland

cacua r— research should be carried out g 1
i and written up.” : b7

-- Reviewer 3 group phase individual phases

y,

by triangulating complementary evidence ina two-step study.
First, we observe developers’ code review activiy. We analyze

138 popular

- E sl sae h
R ACM SIGSOFT social-aspects cogmtrl‘\éz :yspects
et o of et ‘“‘_f“;“;ﬁ‘.’.,‘.,“ﬂ,.‘.::"{?ﬁ Distinguished Paper Award ..,

notaffected by it on o he e, ey have G4 ower ESEC/FSE 2022

R author =} reviewers

CCS CONCEPTS

KEYWORDS
Code Review, c Bi

E. Fregnan . y G. Calikli software system
M. D'Ambros ——— —
zest CodeLounge@S! U. of Glasgow —. . >

history v i
version i version i+1

pull requests with 2 files

pull requests with 5 files

Welcome Page

. . 2\ .
an observational study an observational study a controlled experiment T

design o
Yet, what else could affect the We analyzed ~200K PRs aspects to consider =1 E=%
number of comments on files from 138 popular GitHub projects , . = |I= | |= lI=
X . 1 Use Seqcaryy 0 suanc paratons f h s e of c0es < ® X . and o md aa ab s « experiment platform e ; e
(i.e., confounding factors)? ' o o (Java-based with > 1k stars)... — 1% =
. Change size 5@ cumulative number of * Objects = ||I= = =
. : review comments . changes Gode review task
. test files e T e = . . ore 9 ode review tas
.. o ﬁx:usemlrkduwn'nrNTMLseningdes:ri:ion~/ o b and iﬂ thls' by flle pOSItlon
« number of participants 1152632 et s e o - s € Saptanie 202 o bugs) _
Ffetirs: ke vofing b oo aace o ke pertaaccs o & o pull requests with 7 files pull requests with 10 files . [] postrevi
. bOtS 192631 by Smonsitks s closed 8 hours go - Drat ° ConfOUndlng faCtorS !_ qﬁestionnaire
1+ Log a lot more of the Microsoft Auth extension [=]
. threads o rener e et s s - . participants '1‘"
“? + consent
+ big data matters . recruiting

M. D'Ambros
CodeLounge@SI

1t 2nd 3rd 4th S5th 6th 7th st 2nd 3rd 4th S5th 6th 7th 8th 9th 10th Demographics Closing page

file position file position

B
a controlled experiment
data analysis

ABSTRACT

— a n e m pi ri c a I St u d y The most popular code review tools (e.g., Gerrit and GitHub) present

the files to review sorted in alphabetical order. Could this choice
S h a ri ng d ata & materia I S or, more generally, the relative position in which a file is presented
bias the outcome of code reviews? We investigate this hypothesis
by triangulating complementary evidence in a two-step study.
What to use First, we observe developers’ code review activity. We analyze
the review comments pertaining to 219,476 Pull Requests (PRs) from
- rxiv (p re- p ri nt) 138 popular Java projects on GitHub. We found files shown earlier
in a PR to receive more comments than files shown later, also when

Alberto Baccheljj

ASSOCIATE
PROFE
HEAD OF zpgr > SOR

what to do potential problems we ruled out:

« filter out non-serious participants participants’ groups are not
homogeneous

. controlling for possible confounding factors: e.g., the presence of
® ZenOdO (data & materla |S) discussion threads or the lines added in a file. Second, we measure
the impact of file position on defect finding in code review. Recruit-
. g |t h u b ing 106 participants, we conduct an online controlled experiment
in which we measure participants’ performance in detecting two
unrelated defects seeded into two different files. Participants are

« use the right statistics

BianUhle

. one defect might influence Stras
’ €rland

+ read Dr. Laken's book! O R
participants in finding the other

° Cond uct rObUStness teSting epre * yesl to maintain YOUf tOOIS! assigned to one of two treatments in which the position of the
® the defeCtS are too eaSY/d |ﬁ:|CU |t defective files is switched. For one type of defect, participants are
. but do not use for a rch |V| ng not affected by its file’s position; for the other, they have 64% lower

odds to identify it when its file is last as opposed to first. Overall, our
findings provide evidence that the relative position in which files
are presented has an impact on code reviews’ outcome; we discuss
these implicati it i

Preprint: https://doi.org/10.48550/arXiv.2208.04259
Data and Materials: https://doi.org/10.5281/zenodo.6901285

Zest@ifl..UZh.Ch

+ a low number of participants
EMAIL

http. .
URLp //ZeSt.lfl.uZh.Ch

